IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2165-d123395.html
   My bibliography  Save this article

Hydro Power Reservoir Aggregation via Genetic Algorithms

Author

Listed:
  • Markus Löschenbrand

    (Department of Electric Power Engineering, NTNU, 7491 Trondheim, Norway)

  • Magnus Korpås

    (Department of Electric Power Engineering, NTNU, 7491 Trondheim, Norway)

Abstract

Electrical power systems with a high share of hydro power in their generation portfolio tend to display distinct behavior. Low generation cost and the possibility of peak shaving create a high amount of flexibility. However, stochastic influences such as precipitation and external market effects create uncertainty and thus establish a wide range of potential outcomes. Therefore, optimal generation scheduling is a key factor to successful operation of hydro power dominated systems. This paper aims to bridge the gap between scheduling on large-scale (e.g., national) and small scale (e.g., a single river basin) levels, by applying a multi-objective master/sub-problem framework supported by genetic algorithms. A real-life case study from southern Norway is used to assess the validity of the method and give a proof of concept. The introduced method can be applied to efficiently integrate complex stochastic sub-models into Virtual Power Plants and thus reduce the computational complexity of large-scale models whilst minimizing the loss of information.

Suggested Citation

  • Markus Löschenbrand & Magnus Korpås, 2017. "Hydro Power Reservoir Aggregation via Genetic Algorithms," Energies, MDPI, vol. 10(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2165-:d:123395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan Liu & Shenglian Guo & Xiaowei Xu & Jionghong Chen, 2011. "Derivation of Aggregation-Based Joint Operating Rule Curves for Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3177-3200, October.
    2. Wolfgang, Ove & Haugstad, Arne & Mo, Birger & Gjelsvik, Anders & Wangensteen, Ivar & Doorman, Gerard, 2009. "Hydro reservoir handling in Norway before and after deregulation," Energy, Elsevier, vol. 34(10), pages 1642-1651.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blom, Evelin & Söder, Lennart, 2022. "Accurate model reduction of large hydropower systems with associated adaptive inflow," Renewable Energy, Elsevier, vol. 200(C), pages 1059-1067.
    2. Blom, Evelin & Söder, Lennart, 2024. "Single-level reduction of the hydropower area Equivalent bilevel problem for fast computation," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Akshita & Kumar, Arun & Khatod, Dheeraj Kumar, 2019. "Optimized scheduling of hydropower with increase in solar and wind installations," Energy, Elsevier, vol. 183(C), pages 716-732.
    2. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    3. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    4. Chang-ming Ji & Ting Zhou & Hai-tao Huang, 2014. "Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2435-2451, July.
    5. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    6. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    7. Heike Scheben & Nikolai Klempp & Kai Hufendiek, 2020. "Impact of Long-Term Water Inflow Uncertainty on Wholesale Electricity Prices in Markets with High Shares of Renewable Energies and Storages," Energies, MDPI, vol. 13(9), pages 1-21, May.
    8. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    9. Doorman, Gerard L. & Frøystad, Dag Martin, 2013. "The economic impacts of a submarine HVDC interconnection between Norway and Great Britain," Energy Policy, Elsevier, vol. 60(C), pages 334-344.
    10. Baptiste François & Sara Martino & Lena S. Tøfte & Benoit Hingray & Birger Mo & Jean-Dominique Creutin, 2017. "Effects of Increased Wind Power Generation on Mid-Norway’s Energy Balance under Climate Change: A Market Based Approach," Energies, MDPI, vol. 10(2), pages 1-18, February.
    11. Wei Zhang & Xiaohui Lei & Pan Liu & Xu Wang & Hao Wang & Peibing Song, 2019. "Identifying the Relationship between Assignments of Scenario Weights and their Positions in the Derivation of Reservoir Operating Rules under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 261-279, January.
    12. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    13. Judy P. Che-Castaldo & Rémi Cousin & Stefani Daryanto & Grace Deng & Mei-Ling E. Feng & Rajesh K. Gupta & Dezhi Hong & Ryan M. McGranaghan & Olukunle O. Owolabi & Tianyi Qu & Wei Ren & Toryn L. J. Sch, 2021. "Critical Risk Indicators (CRIs) for the electric power grid: a survey and discussion of interconnected effects," Environment Systems and Decisions, Springer, vol. 41(4), pages 594-615, December.
    14. Hans Ole Riddervold & Ellen Krohn Aasg{aa}rd & Lisa Haukaas & Magnus Korp{aa}s, 2021. "Internal hydro- and wind portfolio optimisation in real-time market operations," Papers 2102.10098, arXiv.org.
    15. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    16. Riddervold, Hans Ole & Aasgård, Ellen Krohn & Haukaas, Lisa & Korpås, Magnus, 2021. "Internal hydro- and wind portfolio optimisation in real-time market operations," Renewable Energy, Elsevier, vol. 173(C), pages 675-687.
    17. Vereide, Kaspar & Pitorac, Livia & Zeringue, Rachel & Kollandsrud, Arne, 2024. "The boosterpump concept for reconstruction of hydropower plants to pumped storage plants," Renewable Energy, Elsevier, vol. 229(C).
    18. B. François & B. Hingray & J. Creutin & F. Hendrickx, 2015. "Estimating Water System Performance Under Climate Change: Influence of the Management Strategy Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4903-4918, October.
    19. Gaete-Morales, Carlos & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2019. "A novel framework for development and optimisation of future electricity scenarios with high penetration of renewables and storage," Applied Energy, Elsevier, vol. 250(C), pages 1657-1672.
    20. Li, Xiao & Liu, Pan & Wang, Yibo & Yang, Zhikai & Gong, Yu & An, Rihui & Huang, Kangdi & Wen, Yan, 2022. "Derivation of operating rule curves for cascade hydropower reservoirs considering the spot market: A case study of the China's Qing River cascade-reservoir system," Renewable Energy, Elsevier, vol. 182(C), pages 1028-1038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2165-:d:123395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.