Using organosolv pretreatment with acid wastewater for enhanced fermentable sugar and ethanol production from rubberwood waste
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.08.068
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Qu, Chunyun & Dai, Kaiqun & Fu, Hongxin & Wang, Jufang, 2021. "Enhanced ethanol production from lignocellulosic hydrolysates by Thermoanaerobacterium aotearoense SCUT27/ΔargR1864 with improved lignocellulose-derived inhibitors tolerance," Renewable Energy, Elsevier, vol. 173(C), pages 652-661.
- Hemansi, & Gupta, Rishi & Aswal, Vinod K. & Saini, Jitendra Kumar, 2020. "Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: Insight from small angle neutron scattering (SANS)," Renewable Energy, Elsevier, vol. 147(P1), pages 2091-2101.
- Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
- Sheng, Yequan & Tan, Xin & Gu, Yuanjie & Zhou, Xin & Tu, Maobing & Xu, Yong, 2021. "Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues," Renewable Energy, Elsevier, vol. 163(C), pages 732-739.
- Chen, Hongmei & Zhao, Jia & Hu, Tianhang & Zhao, Xuebing & Liu, Dehua, 2015. "A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features," Applied Energy, Elsevier, vol. 150(C), pages 224-232.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tong, Wenyao & Chu, Qiulu & Li, Jin & Xie, Xinyu & Wang, Jing & Jin, Yongcan & Wu, Shufang & Hu, Jinguang & Song, Kai, 2022. "Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass," Renewable Energy, Elsevier, vol. 187(C), pages 123-134.
- Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
- Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
- Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
- Zhao, Xuebing & Wen, Jialong & Chen, Hongmei & Liu, Dehua, 2018. "The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production," Renewable Energy, Elsevier, vol. 128(PA), pages 200-209.
- Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
- Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
- Xie, Xinyu & Song, Kai & Wang, Jing & Hu, Jinguang & Wu, Shufang & Chu, Qiulu, 2024. "Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 225(C).
- Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
- Cybulska, Iwona & Brudecki, Grzegorz P. & Zembrzuska, Joanna & Schmidt, Jens Ejbye & Lopez, Celia Garcia-Banos & Thomsen, Mette Hedegaard, 2017. "Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates," Applied Energy, Elsevier, vol. 185(P2), pages 1040-1050.
- Dong, Chengyu & Wang, Ying & Chan, Ka-Lai & Bhatia, Akanksha & Leu, Shao-Yuan, 2018. "Temperature profiling to maximize energy yield with reduced water input in a lignocellulosic ethanol biorefinery," Applied Energy, Elsevier, vol. 214(C), pages 63-72.
- Baramee, Sirilak & Siriatcharanon, Ake-kavitch & Ketbot, Prattana & Teeravivattanakit, Thitiporn & Waeonukul, Rattiya & Pason, Patthra & Tachaapaikoon, Chakrit & Ratanakhanokchai, Khanok & Phitsuwan, , 2020. "Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility," Renewable Energy, Elsevier, vol. 160(C), pages 555-563.
- Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.
- Jurado, Esperanza & Skiadas, Ioannis V. & Gavala, Hariklia N., 2013. "Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment," Applied Energy, Elsevier, vol. 109(C), pages 104-111.
- Júnia Alves-Ferreira & Ana Lourenço & Francisca Morgado & Luís C. Duarte & Luísa B. Roseiro & Maria C. Fernandes & Helena Pereira & Florbela Carvalheiro, 2021. "Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes," Energies, MDPI, vol. 14(4), pages 1-21, February.
- Raj, Tirath & Chandrasekhar, K. & Naresh Kumar, A. & Kim, Sang-Hyoun, 2022. "Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Ramezani, N. & Sain, M., 2019. "Non-catalytic green solvent lignin isolation process from wheat straw and the structural analysis," Renewable Energy, Elsevier, vol. 140(C), pages 292-303.
- Al Afif, Rafat & Wendland, Martin & Amon, Thomas & Pfeifer, Christoph, 2020. "Supercritical carbon dioxide enhanced pre-treatment of cotton stalks for methane production," Energy, Elsevier, vol. 194(C).
- Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.
More about this item
Keywords
Acid wastewater; Organosolv pretreatment; Enzymatic hydrolysis; Fermentation; Rubberwood waste;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:723-732. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.