IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v150y2015icp224-232.html
   My bibliography  Save this article

A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features

Author

Listed:
  • Chen, Hongmei
  • Zhao, Jia
  • Hu, Tianhang
  • Zhao, Xuebing
  • Liu, Dehua

Abstract

Four organosolv pretreatment processes, namely Formiline, Acetoline, sulfuric acid-catalyzed ethanol (SACE) and auto-catalyzed ethanol (ACE) pretreatments were used to pretreat wheat straw under respective optimal conditions. Comparative studies were performed in terms of the enzymatic digestibility of cellulosic solids, simultaneous saccharification and fermentation (SSF) for ethanol production, mass balance analysis and structural features of the pretreated solids. The results indicated that Formiline and Acetoline pretreatments showed higher degrees of delignification, lower xylose degradation and lower solid glucan recoveries than SACE and ACE processes. The SACE and ACE pretreated solids still had high lignin contents but demonstrated higher initial enzymatic hydrolysis rates than Formiline and Acetoline pretreated solids. Formiline pretreatment obtained the highest final enzymatic glucan conversion, glucose concentration and ethanol yield, while Acetoline pretreatment obtained the lowest. After organosolv pretreatment, the compact and beehive-like cell wall structure was disrupted and cellulose fibers became separated. The SACE and ACE pretreated solids showed more depositions on fiber surface, which probably came from the condensation and precipitation of lignin.

Suggested Citation

  • Chen, Hongmei & Zhao, Jia & Hu, Tianhang & Zhao, Xuebing & Liu, Dehua, 2015. "A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: Substrate digestibility, fermentability and structural features," Applied Energy, Elsevier, vol. 150(C), pages 224-232.
  • Handle: RePEc:eee:appene:v:150:y:2015:i:c:p:224-232
    DOI: 10.1016/j.apenergy.2015.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jomnonkhaow, Umarin & Sittijunda, Sureewan & Reungsang, Alissara, 2022. "Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage," Renewable Energy, Elsevier, vol. 181(C), pages 1237-1249.
    2. Zhao, Xuebing & Wen, Jialong & Chen, Hongmei & Liu, Dehua, 2018. "The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production," Renewable Energy, Elsevier, vol. 128(PA), pages 200-209.
    3. Júnia Alves-Ferreira & Ana Lourenço & Francisca Morgado & Luís C. Duarte & Luísa B. Roseiro & Maria C. Fernandes & Helena Pereira & Florbela Carvalheiro, 2021. "Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Cybulska, Iwona & Brudecki, Grzegorz P. & Zembrzuska, Joanna & Schmidt, Jens Ejbye & Lopez, Celia Garcia-Banos & Thomsen, Mette Hedegaard, 2017. "Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates," Applied Energy, Elsevier, vol. 185(P2), pages 1040-1050.
    5. Islam, Md Khairul & Rehman, Shazia & Guan, Jianyu & Lau, Chun-Yin & Tse, Ho-Yin & Yeung, Chi Shun & Leu, Shao-Yuan, 2021. "Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin," Applied Energy, Elsevier, vol. 303(C).
    6. Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    8. Dong, Chengyu & Wang, Ying & Chan, Ka-Lai & Bhatia, Akanksha & Leu, Shao-Yuan, 2018. "Temperature profiling to maximize energy yield with reduced water input in a lignocellulosic ethanol biorefinery," Applied Energy, Elsevier, vol. 214(C), pages 63-72.
    9. Ramezani, N. & Sain, M., 2019. "Non-catalytic green solvent lignin isolation process from wheat straw and the structural analysis," Renewable Energy, Elsevier, vol. 140(C), pages 292-303.
    10. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    11. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    12. Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.
    13. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    14. Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.
    15. Nunui, Khanitta & Boonsawang, Piyarat & Chaiprapat, Sumate & Charnnok, Boonya, 2022. "Using organosolv pretreatment with acid wastewater for enhanced fermentable sugar and ethanol production from rubberwood waste," Renewable Energy, Elsevier, vol. 198(C), pages 723-732.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:150:y:2015:i:c:p:224-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.