IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v3y2013i2d10.1038_nclimate1683.html
   My bibliography  Save this article

Geophysical limits to global wind power

Author

Listed:
  • Kate Marvel

    (Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory)

  • Ben Kravitz

    (Carnegie Institution Department of Global Ecology)

  • Ken Caldeira

    (Carnegie Institution Department of Global Ecology)

Abstract

Wind power is a near-zero-emissions source of energy. Although at present wind turbines are placed on the Earth’s surface, high-altitude winds offer greater possibilities for power generation. This study uses a climate model to estimate power generation for both surface and high-altitude winds, and finds that the latter provide much more power, but at a possible climate cost. However, there are unlikely to be substantial climate effects in meeting the present global demand.

Suggested Citation

  • Kate Marvel & Ben Kravitz & Ken Caldeira, 2013. "Geophysical limits to global wind power," Nature Climate Change, Nature, vol. 3(2), pages 118-121, February.
  • Handle: RePEc:nat:natcli:v:3:y:2013:i:2:d:10.1038_nclimate1683
    DOI: 10.1038/nclimate1683
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1683
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Fouest, Sébastien & Mulleners, Karen, 2022. "The dynamic stall dilemma for vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 198(C), pages 505-520.
    2. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    3. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    4. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    5. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    6. Santos, J.A. & Rochinha, C. & Liberato, M.L.R. & Reyers, M. & Pinto, J.G., 2015. "Projected changes in wind energy potentials over Iberia," Renewable Energy, Elsevier, vol. 75(C), pages 68-80.
    7. Maurer, Rainer, 2015. "Auf dem Weg zur weltanschaulichen Bekenntnisschule: Das wirtschaftspolitische Leitbild der Hochschule Pforzheim," Beiträge der Hochschule Pforzheim 152, Pforzheim University.
    8. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    9. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    10. Dylan Harrison-Atlas & Galen Maclaurin & Eric Lantz, 2021. "Spatially-Explicit Prediction of Capacity Density Advances Geographic Characterization of Wind Power Technical Potential," Energies, MDPI, vol. 14(12), pages 1-28, June.
    11. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    12. Antonini, Enrico G.A. & Caldeira, Ken, 2021. "Atmospheric pressure gradients and Coriolis forces provide geophysical limits to power density of large wind farms," Applied Energy, Elsevier, vol. 281(C).
    13. Warner, Kevin J. & Jones, Glenn A., 2017. "A population-induced renewable energy timeline in nine world regions," Energy Policy, Elsevier, vol. 101(C), pages 65-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:3:y:2013:i:2:d:10.1038_nclimate1683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.