IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp1103-1116.html
   My bibliography  Save this article

Airborne wind energy resource analysis

Author

Listed:
  • Bechtle, Philip
  • Schelbergen, Mark
  • Schmehl, Roland
  • Zillmann, Udo
  • Watson, Simon

Abstract

We compare the available wind resources for conventional wind turbines and for airborne wind energy systems. Accessing higher altitudes and continuously adjusting the harvesting operation to the wind resource substantially increases the potential energy yield. The study is based on the ERA5 reanalysis data which covers a period of 7 years with hourly estimates at a surface resolution of 31 × 31 km and a vertical resolution of 137 barometric altitude levels. We present detailed wind statistics for a location in the English Channel and then expand the analysis to a surface grid of Western and Central Europe with a resolution of 110 × 110 km. Over the land mass and coastal areas of Europe we find that compared to a fixed harvesting height at the approximate hub height of wind turbines, the wind power density which is available for 95% of the time increases by a factor of two.

Suggested Citation

  • Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
  • Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:1103-1116
    DOI: 10.1016/j.renene.2019.03.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Vlugt, Rolf & Bley, Anna & Noom, Michael & Schmehl, Roland, 2019. "Quasi-steady model of a pumping kite power system," Renewable Energy, Elsevier, vol. 131(C), pages 83-99.
    2. Archer, Cristina L. & Delle Monache, Luca & Rife, Daran L., 2014. "Airborne wind energy: Optimal locations and variability," Renewable Energy, Elsevier, vol. 64(C), pages 180-186.
    3. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    4. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    5. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    6. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    7. Kate Marvel & Ben Kravitz & Ken Caldeira, 2013. "Geophysical limits to global wind power," Nature Climate Change, Nature, vol. 3(2), pages 118-121, February.
    8. De Lellis, Marcelo & Reginatto, Romeu & Saraiva, Ramiro & Trofino, Alexandre, 2018. "The Betz limit applied to Airborne Wind Energy," Renewable Energy, Elsevier, vol. 127(C), pages 32-40.
    9. Cristina L. Archer & Ken Caldeira, 2009. "Global Assessment of High-Altitude Wind Power," Energies, MDPI, vol. 2(2), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    2. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    4. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    5. Roystan Vijay Castelino & Pankaj Kumar & Yashwant Kashyap & Anabalagan Karthikeyan & Manjunatha Sharma K. & Debabrata Karmakar & Panagiotis Kosmopoulos, 2023. "Exploring the Potential of Kite-Based Wind Power Generation: An Emulation-Based Approach," Energies, MDPI, vol. 16(13), pages 1-22, July.
    6. Jelle A. W. Poland & Roland Schmehl, 2023. "Modelling Aero-Structural Deformation of Flexible Membrane Kites," Energies, MDPI, vol. 16(14), pages 1-24, July.
    7. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    8. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    9. Manuel C. R. M. Fernandes & Sérgio Vinha & Luís Tiago Paiva & Fernando A. C. C. Fontes, 2022. "L 0 and L 1 Guidance and Path-Following Control for Airborne Wind Energy Systems," Energies, MDPI, vol. 15(4), pages 1-16, February.
    10. Sweder Reuchlin & Rishikesh Joshi & Roland Schmehl, 2023. "Sizing of Hybrid Power Systems for Off-Grid Applications Using Airborne Wind Energy," Energies, MDPI, vol. 16(10), pages 1-15, May.
    11. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    12. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    13. Mostafa A. Rushdi & Tarek N. Dief & Shigeo Yoshida & Roland Schmehl, 2020. "Towing Test Data Set of the Kyushu University Kite System," Data, MDPI, vol. 5(3), pages 1-18, August.
    14. Malz, E.C. & Verendel, V. & Gros, S., 2020. "Computing the power profiles for an Airborne Wind Energy system based on large-scale wind data," Renewable Energy, Elsevier, vol. 162(C), pages 766-778.
    15. Rishikesh Joshi & Michiel Kruijff & Roland Schmehl, 2023. "Value-Driven System Design of Utility-Scale Airborne Wind Energy," Energies, MDPI, vol. 16(4), pages 1-19, February.
    16. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    2. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    3. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Lunney, E. & Ban, M. & Duic, N. & Foley, A., 2017. "A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 899-911.
    5. Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
    6. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
    7. Sweder Reuchlin & Rishikesh Joshi & Roland Schmehl, 2023. "Sizing of Hybrid Power Systems for Off-Grid Applications Using Airborne Wind Energy," Energies, MDPI, vol. 16(10), pages 1-15, May.
    8. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    9. Le Fouest, Sébastien & Mulleners, Karen, 2022. "The dynamic stall dilemma for vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 198(C), pages 505-520.
    10. Mahdi Ebrahimi Salari & Joseph Coleman & Daniel Toal, 2018. "Power Control of Direct Interconnection Technique for Airborne Wind Energy Systems," Energies, MDPI, vol. 11(11), pages 1-17, November.
    11. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    12. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    13. Argatov, Ivan & Shafranov, Valentin, 2016. "Economic assessment of small-scale kite wind generators," Renewable Energy, Elsevier, vol. 89(C), pages 125-134.
    14. Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
    15. Kazemi, Seyed Ali & Nili-Ahmadabadi, Mahdi & Sedaghat, Ahmad & Saghafian, Mohsen, 2016. "Aerodynamic performance of a circulating airfoil section for Magnus systems via numerical simulation and flow visualization," Energy, Elsevier, vol. 104(C), pages 1-15.
    16. Naik, Kartik & Vermillion, Chris, 2024. "Integrated physical design, control design, and site selection for an underwater energy-harvesting kite system," Renewable Energy, Elsevier, vol. 220(C).
    17. De Lellis, M. & Mendonça, A.K. & Saraiva, R. & Trofino, A. & Lezana, Á., 2016. "Electric power generation in wind farms with pumping kites: An economical analysis," Renewable Energy, Elsevier, vol. 86(C), pages 163-172.
    18. Fagiano, L. & Schnez, S., 2017. "On the take-off of airborne wind energy systems based on rigid wings," Renewable Energy, Elsevier, vol. 107(C), pages 473-488.
    19. Xinyu Long & Mingwei Sun & Minnan Piao & Zengqiang Chen, 2021. "Parameterized Trajectory Optimization and Tracking Control of High Altitude Parafoil Generation," Energies, MDPI, vol. 14(22), pages 1-20, November.
    20. Franke, Katja & Sensfuß, Frank & Deac, Gerda & Kleinschmitt, Christoph & Ragwitz, Mario, 2021. "Factors affecting the calculation of wind power potentials: A case study of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:1103-1116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.