IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp978-994.html
   My bibliography  Save this article

Estimation and prediction of shallow ground source heat resources subjected to complex soil and atmospheric boundary conditions

Author

Listed:
  • Gao, Wu
  • Masum, Shakil
  • Qadrdan, Meysam
  • Thomas, Hywel Rhys

Abstract

5th generation district heating and cooling networks operating at near ground temperature offer a low-cost, zero-carbon energy solution. Detailed understanding and accurate estimation of ground behaviour for its heat storage and recharge potential are of paramount importance for the success of such networks. In this paper, an advanced modelling tool, based on a coupled Thermal-Hydraulic (TH) modelling framework, is presented to calculate and predict temperature and soil-moisture behaviour of a shallow ground under complex atmospheric, temperature and hydraulic boundary conditions. Atmospheric data e.g., solar radiation, rainfall, humidity, air temperature, wind velocity is considered together with subsurface soil data to investigate thermal and hydraulic responses of the ground, and its individual soil layers. Furthermore, a transient method for estimating shallow ground source heat (SGSH) resources is proposed based on the simulated temperature and saturation distributions of the ground. The model is applied to predict the long-term ground temperature and saturation level of a test site located in Warwickshire County, UK. The total heat content per unit area and the annual/seasonal/monthly net heat content per unit area of the site are predicted for a five-year period. The total heat content of the sandy clay layer varied between 2.32 and 11.6 MJ/m2, silty clay from 34.0 to 50.5 MJ/m2, and mudstone from 50.7 to 55.0 MJ/m2. A parametric sensitivity study is also conducted to investigate the effects of soil types and hydraulic drainage conditions on the ground heat supply potential, and it revealed that the spatial and temporal distributions of ground heat is significantly affected by the underlying soils. This study highlights the influences of atmospheric conditions and coupled ground processes, and the parameters that should be considered for designing a 5th generation low-temperature heat network.

Suggested Citation

  • Gao, Wu & Masum, Shakil & Qadrdan, Meysam & Thomas, Hywel Rhys, 2022. "Estimation and prediction of shallow ground source heat resources subjected to complex soil and atmospheric boundary conditions," Renewable Energy, Elsevier, vol. 197(C), pages 978-994.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:978-994
    DOI: 10.1016/j.renene.2022.07.148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    2. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    3. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    4. Pagani, M. & Maire, P. & Korosec, W. & Chokani, N. & Abhari, R.S., 2020. "District heat network extension to decarbonise building stock: A bottom-up agent-based approach," Applied Energy, Elsevier, vol. 272(C).
    5. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    6. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    7. Sofyan, Sarwo Edhy & Hu, Eric & Kotousov, Andrei, 2016. "A new approach to modelling of a horizontal geo-heat exchanger with an internal source term," Applied Energy, Elsevier, vol. 164(C), pages 963-971.
    8. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Lina & Liu, Rui & Yan, Jiakun & Zhang, Suiqi, 2024. "Unperforated film-covered planting contributes to improved film recovery rates and foxtail millet grain yields in sandy soils," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Sommer, Tobias & Sulzer, Matthias & Wetter, Michael & Sotnikov, Artem & Mennel, Stefan & Stettler, Christoph, 2020. "The reservoir network: A new network topology for district heating and cooling," Energy, Elsevier, vol. 199(C).
    3. Fiorentini, Massimo & Heer, Philipp & Baldini, Luca, 2023. "Design optimization of a district heating and cooling system with a borehole seasonal thermal energy storage," Energy, Elsevier, vol. 262(PB).
    4. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    5. Beatriz María Paredes-Sánchez & José Pablo Paredes & Natalia Caparrini & Elena Rivo-López, 2021. "Analysis of District Heating and Cooling Energy Systems in Spain: Resources, Technology and Management," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    6. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    8. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    9. Pakere, Ieva & Gravelsins, Armands & Lauka, Dace & Bazbauers, Gatis & Blumberga, Dagnija, 2021. "Linking energy efficiency policies toward 4th generation district heating system," Energy, Elsevier, vol. 234(C).
    10. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    11. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    12. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Guolong Li & Dongliang Sun & Dongxu Han & Bo Yu, 2022. "A Novel Layered Slice Algorithm for Soil Heat Storage and Its Solving Performance Analysis," Energies, MDPI, vol. 15(10), pages 1-23, May.
    14. Abugabbara, Marwan & Lindhe, Jonas & Javed, Saqib & Johansson, Dennis & Claesson, Johan, 2024. "Comparative study and validation of a new analytical method for hydraulic modelling of bidirectional low temperature networks," Energy, Elsevier, vol. 296(C).
    15. Sommer, Tobias & Sotnikov, Artem & Sulzer, Matthias & Scholz, Volkher & Mischler, Stefan & Rismanchi, Behzad & Gjoka, Kristian & Mennel, Stefan, 2022. "Hydrothermal challenges in low-temperature networks with distributed heat pumps," Energy, Elsevier, vol. 257(C).
    16. Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
    17. Gerald Schweiger & Fabian Kuttin & Alfred Posch, 2019. "District Heating Systems: An Analysis of Strengths, Weaknesses, Opportunities, and Threats of the 4GDH," Energies, MDPI, vol. 12(24), pages 1-15, December.
    18. Werner, Sven, 2022. "Network configurations for implemented low-temperature district heating," Energy, Elsevier, vol. 254(PB).
    19. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    20. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:978-994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.