IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp1639-1656.html
   My bibliography  Save this article

Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan

Author

Listed:
  • Ushamah, Hafiz Muhammad
  • Ahmed, Naveed
  • Elfeky, K.E.
  • Mahmood, Mariam
  • Qaisrani, Mumtaz A.
  • Waqas, Adeel
  • Zhang, Qian

Abstract

Fossil fuels are being used to accommodate domestic heating needs all over the world, and the alarming rise in carbon footprint is demanding the world to shift towards renewable energy technologies. A key strategy to lessen household fossil fuel consumption is a solar hybrid district heating network integrated with seasonal thermal energy storage (TES). The objective of this study was to analyze and compare the thermo-economic performance of solar hybrid district heating systems integrated with borehole TES systems in ' 'Pakistan's five climate zones and identify the best suitable solar thermal collector technology. Based on the solar energy incident on different types of thermal collectors, a validated TRNSYS model was used to investigate the dynamic performance indices i.e., solar fraction, system efficiency, and thermal storage efficiency. The heat demand model and weather-related data were changed as input to the system. Based on mentioned performance indices, out of 5 different cities having different climates, climate Zone-C(Quetta), having a continental semi-arid climate, is selected as the most suitable, and Zone-E(Karachi) has tropical desert climate as the least favorable among five different zones with a seasonal storage efficiency of 61% and 19% respectively. The solar fraction is about 91%, also up to the mark as the proposed system utilizes both solar energy and auxiliary systems. Further, the implementation of different thermal collector technologies Parabolic Trough Collector, Evacuated Tube Collector & Flat Plate Collector, revealed that the thermal efficiency of ETC is best among all, with the highest value of 65%, followed by PTC at 44%, and FPC shows the least efficiency of 36%. The economic analysis shows that the model embedded with ETC has a minimum payback period of 6.90 years, followed by an FPC of 7.22 years and a maximum for PTC of 7.38 years. The analysis presented in the current study provides guidelines for researchers and policymakers to identify acceptable location-based best solar thermal collector technologies coupled with seasonal thermal storage for district space heating.

Suggested Citation

  • Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1639-1656
    DOI: 10.1016/j.renene.2022.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
    3. Dolna, Oktawia, 2021. "Operation of a ground thermal energy storage supplied by different sources in a low-temperature district heating network," Renewable Energy, Elsevier, vol. 180(C), pages 586-604.
    4. Lundh, M. & Dalenbäck, J.-O., 2008. "Swedish solar heated residential area with seasonal storage in rock: Initial evaluation," Renewable Energy, Elsevier, vol. 33(4), pages 703-711.
    5. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    6. Wang, Huajun & Qi, Chengying & Wang, Enyu & Zhao, Jun, 2009. "A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings," Renewable Energy, Elsevier, vol. 34(1), pages 307-314.
    7. Yang, Libing & Entchev, Evgueniy & Rosato, Antonio & Sibilio, Sergio, 2017. "Smart thermal grid with integration of distributed and centralized solar energy systems," Energy, Elsevier, vol. 122(C), pages 471-481.
    8. Lhendup, Tshewang & Aye, Lu & Fuller, Robert James, 2014. "Thermal charging of boreholes," Renewable Energy, Elsevier, vol. 67(C), pages 165-172.
    9. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    11. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    12. Seyed Ali Ghoreishi-Madiseh & Ali Fahrettin Kuyuk & Marco Antonio Rodrigues de Brito & Durjoy Baidya & Zahra Torabigoodarzi & Amir Safari, 2019. "Application of Borehole Thermal Energy Storage in Waste Heat Recovery from Diesel Generators in Remote Cold Climate Locations," Energies, MDPI, vol. 12(4), pages 1-14, February.
    13. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    14. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    15. Kjellsson, Elisabeth & Hellström, Göran & Perers, Bengt, 2010. "Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings," Energy, Elsevier, vol. 35(6), pages 2667-2673.
    16. Xi, Chen & Hongxing, Yang & Lin, Lu & Jinggang, Wang & Wei, Liu, 2011. "Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating," Energy, Elsevier, vol. 36(8), pages 5292-5300.
    17. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    18. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    19. Rosato, Antonio & Ciervo, Antonio & Ciampi, Giovanni & Sibilio, Sergio, 2019. "Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings," Renewable Energy, Elsevier, vol. 143(C), pages 596-610.
    20. Elhashmi, Rodwan & Hallinan, Kevin P. & Chiasson, Andrew D., 2020. "Low-energy opportunity for multi-family residences: A review and simulation-based study of a solar borehole thermal energy storage system," Energy, Elsevier, vol. 204(C).
    21. Haris, Muhammad & Hou, Michael Z. & Feng, Wentao & Mehmood, Faisal & Saleem, Ammar bin, 2022. "A regenerative Enhanced Geothermal System for heat and electricity production as well as energy storage," Renewable Energy, Elsevier, vol. 197(C), pages 342-358.
    22. Flynn, Ciarán & Sirén, Kai, 2015. "Influence of location and design on the performance of a solar district heating system equipped with borehole seasonal storage," Renewable Energy, Elsevier, vol. 81(C), pages 377-388.
    23. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    24. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    25. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cáceres, G. & Segal, R. & Pitié, F., 2014. "Latent heat storage with tubular-encapsulated phase change materials (PCMs)," Energy, Elsevier, vol. 76(C), pages 66-72.
    26. Rosato, Antonio & Ciervo, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Guarino, Francesco & Sibilio, Sergio, 2020. "Impact of solar field design and back-up technology on dynamic performance of a solar hybrid heating network integrated with a seasonal borehole thermal energy storage serving a small-scale residentia," Renewable Energy, Elsevier, vol. 154(C), pages 684-703.
    27. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoxia Li & Husheng Qiu & Zhifeng Wang & Jinping Li & Guobin Yuan & Xiao Guo & Lifeng Jin, 2023. "Numerical Investigation of a Solar-Heating System with Solar-Tower Receiver and Seasonal Storage in Northern China: Dynamic Performance Assessment and Operation Strategy Analysis," Energies, MDPI, vol. 16(14), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    2. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Ciampi, Giovanni & Rosato, Antonio & Sibilio, Sergio, 2018. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage," Energy, Elsevier, vol. 143(C), pages 757-771.
    5. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    6. Yang, Tianrun & Liu, Wen & Sun, Qie & Hu, Weihao & Kramer, Gert Jan, 2023. "Techno-economic-environmental analysis of seasonal thermal energy storage with solar heating for residential heating in China," Energy, Elsevier, vol. 283(C).
    7. Evangelos I. Sakellariou & Petros J. Axaopoulos & Bill Vaneck Bot & Ioannis E. Sarris, 2022. "Energy Performance Evaluation of a Solar PVT Thermal Energy Storage System Based on Small Size Borefield," Energies, MDPI, vol. 15(21), pages 1-19, October.
    8. Pokhrel, Sajjan & Amiri, Leyla & Zueter, Ahmad & Poncet, Sébastien & Hassani, Ferri P. & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "Thermal performance evaluation of integrated solar-geothermal system; a semi-conjugate reduced order numerical model," Applied Energy, Elsevier, vol. 303(C).
    9. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    10. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    11. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    13. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    14. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    15. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Renaldi, Renaldi & Friedrich, Daniel, 2019. "Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK," Applied Energy, Elsevier, vol. 236(C), pages 388-400.
    17. Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Narula, Kapil & de Oliveira Filho, Fleury & Villasmil, Willy & Patel, Martin K., 2020. "Simulation method for assessing hourly energy flows in district heating system with seasonal thermal energy storage," Renewable Energy, Elsevier, vol. 151(C), pages 1250-1268.
    19. Tulus, Victor & Abokersh, Mohamed Hany & Cabeza, Luisa F. & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2019. "Economic and environmental potential for solar assisted central heating plants in the EU residential sector: Contribution to the 2030 climate and energy EU agenda," Applied Energy, Elsevier, vol. 236(C), pages 318-339.
    20. Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1639-1656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.