IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1197-1203.html
   My bibliography  Save this article

Online detection of trace volatile organic sulfur compounds in a complex biogas mixture with proton-transfer-reaction mass spectrometry

Author

Listed:
  • Tiwari, Prince
  • Wang, Tiantian
  • Indlekofer, Julian
  • El Haddad, Imad
  • Biollaz, Serge
  • Prevot, Andre Stephan Henry
  • Lamkaddam, Houssni

Abstract

Online monitoring of trace contaminants, especially sulfur-containing compounds, is critical in biogas plants to protect downstream process steps, e.g., fuel cells or catalysts. The high biogas purity requirement for fuel cell applications and the presence of a myriad of unknown contaminants at different concentration levels require untargeted measurement techniques with high sensitivity and high dynamic range. Here, we present an online, real-time measurement of trace contaminants in the cleaning stream of a biogas plant with a Vocus proton-transfer-reaction mass spectrometer (Vocus-PTR-MS). We identified more than 300 Volatile Organic Compounds (VOCs) in the raw biogas in the 30–400 m/z range, with total concentrations varying in 54.6–548.3 ppmv on different days. Among these, more than 30 were Volatile Organic Sulfur Compounds (VOSCs), with total concentration in the range of 0.3–9.3 ppmv during measurement days and dimethyl sulfide (C2H6S, DMS) was the most dominant VOSC. Typical biogas tracers were also identified in the ambient air around the biogas plant at low ppbv levels. These results confirm that VOCUS-PTR-MS can be a rapid, scientific online tool of choice to monitor a biogas facility and, hence, shows excellent ability to characterize biogas production.

Suggested Citation

  • Tiwari, Prince & Wang, Tiantian & Indlekofer, Julian & El Haddad, Imad & Biollaz, Serge & Prevot, Andre Stephan Henry & Lamkaddam, Houssni, 2022. "Online detection of trace volatile organic sulfur compounds in a complex biogas mixture with proton-transfer-reaction mass spectrometry," Renewable Energy, Elsevier, vol. 196(C), pages 1197-1203.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1197-1203
    DOI: 10.1016/j.renene.2022.07.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201031X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    2. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    3. Calbry-Muzyka, Adelaide & Madi, Hossein & Rüsch-Pfund, Florian & Gandiglio, Marta & Biollaz, Serge, 2022. "Biogas composition from agricultural sources and organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 181(C), pages 1000-1007.
    4. Osorio, F. & Torres, J.C., 2009. "Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production," Renewable Energy, Elsevier, vol. 34(10), pages 2164-2171.
    5. Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
    6. Rasi, Saija & Lehtinen, Jenni & Rintala, Jukka, 2010. "Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants," Renewable Energy, Elsevier, vol. 35(12), pages 2666-2673.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexey Abdrashitov & Alexander Gavrilov & Evgeny Marfin & Vladimir Panchenko & Andrey Kovalev & Vadim Bolshev & Julia Karaeva, 2023. "Cavitation Reactor for Pretreatment of Liquid Agricultural Waste," Agriculture, MDPI, vol. 13(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vita, A. & Italiano, C. & Previtali, D. & Fabiano, C. & Palella, A. & Freni, F. & Bozzano, G. & Pino, L. & Manenti, F., 2018. "Methanol synthesis from biogas: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 118(C), pages 673-684.
    2. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    3. Calbry-Muzyka, Adelaide & Tarik, Mohamed & Gandiglio, Marta & Li, Jianrong & Foppiano, Debora & de Krom, Iris & Heikens, Dita & Ludwig, Christian & Biollaz, Serge, 2021. "Sampling, on-line and off-line measurement of organic silicon compounds at an industrial biogas-fed 175-kWe SOFC plant," Renewable Energy, Elsevier, vol. 177(C), pages 61-71.
    4. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    5. Dahye Kim & Kyung-Tae Kim & Young-Kwon Park, 2020. "A Comparative Study on the Reduction Effect in Greenhouse Gas Emissions between the Combined Heat and Power Plant and Boiler," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    6. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Rasi, S. & Seppälä, M. & Rintala, J., 2013. "Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays," Energy, Elsevier, vol. 52(C), pages 137-142.
    8. Giannoukos, Stamatios & Tarik, Mohamed & Ludwig, Christian & Biollaz, Serge & Slowik, Jay & Baltensperger, Urs & Henry Prevot, Andre Stephan, 2021. "Detection of trace metals in biogas using extractive electrospray ionization high-resolution mass spectrometry," Renewable Energy, Elsevier, vol. 169(C), pages 780-787.
    9. Orlando Corigliano & Marco Iannuzzi & Crescenzo Pellegrino & Francesco D’Amico & Leonardo Pagnotta & Petronilla Fragiacomo, 2023. "Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production," Energies, MDPI, vol. 16(15), pages 1-29, August.
    10. Rey, M.D. & Font, R. & Aracil, I., 2013. "Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique," Energy, Elsevier, vol. 63(C), pages 161-167.
    11. Papadias, Dionissios D. & Ahmed, Shabbir & Kumar, Romesh, 2012. "Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system," Energy, Elsevier, vol. 44(1), pages 257-277.
    12. Calbry-Muzyka, Adelaide & Madi, Hossein & Rüsch-Pfund, Florian & Gandiglio, Marta & Biollaz, Serge, 2022. "Biogas composition from agricultural sources and organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 181(C), pages 1000-1007.
    13. Paraskevi Panagiotopoulou & Christina Papadopoulou & Haris Matralis & Xenophon Verykios, 2014. "Production of renewable hydrogen by reformation of biofuels," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 231-253, May.
    14. Parente, Marcelo & Soria, M.A. & Madeira, Luis M., 2020. "Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study," Renewable Energy, Elsevier, vol. 157(C), pages 1254-1264.
    15. Song, Guohui & Xiao, Jun & Yan, Chao & Gu, Haiming & Zhao, Hao, 2022. "Quality of gaseous biofuels: Statistical assessment and guidance on production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    18. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    19. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    20. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1197-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.