IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1475-d512956.html
   My bibliography  Save this article

Integrated Performance Optimization of Higher Education Buildings Using Low-Energy Renovation Process and User Engagement

Author

Listed:
  • Abdullahi Ahmed

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

  • Monica Mateo-Garcia

    (Faculty of Computing, Engineering and the Built Environment, Birmingham City University, Birmingham B5 5JU, UK)

  • Andrew Arewa

    (School of Energy, Construction and Environment, Coventry University, Coventry CV1 5FB, UK)

  • Kassim Caratella

    (Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, UK)

Abstract

Building performance improvement through low-energy renovation traditionally involves building performance diagnostics of the existing building, technology evaluation, selection and implementation. Effective building performance diagnostics, post-retrofit assessment and user engagement are essential to deliver performance as well as achieving socio-economic and environmental benefits at every stage of the renovation project life cycle. User’s views are often ignored when renovating a building, causing sub-optimal energy performance, user comfort and wellbeing. This paper seeks to critically evaluate the low-energy renovation process and the role of user and stakeholder engagement in the strategic implementation of low-energy retrofit technologies for performance improvement of higher education buildings. The research focuses on renovation methodology, innovative materials/systems and end-user engagement throughout the renovation project phases (pre-renovation, the renovation process and post renovation). A mixed research method was adopted, which includes building performance modelling, monitoring and user evaluation questionnaires pre and post-renovation. The research is part of European Union (EU)-funded project, targeting 50% reduction in energy consumption using innovative materials and technologies in existing public buildings. The surveys allow comparative analysis of comfort levels and user satisfaction as an indicator of the efficacy of renovation measures. A new renovation process and user engagement framework was developed. The findings suggest that there is a direct relationship between retrofit intervention, improving energy performance of low-carbon buildings and the comfort of occupants. The technologies and strategies also appear to have different impacts on user satisfaction.

Suggested Citation

  • Abdullahi Ahmed & Monica Mateo-Garcia & Andrew Arewa & Kassim Caratella, 2021. "Integrated Performance Optimization of Higher Education Buildings Using Low-Energy Renovation Process and User Engagement," Energies, MDPI, vol. 14(5), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1475-:d:512956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cho, Hyun Mi & Yun, Beom Yeol & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Optimal energy retrofit plan for conservation and sustainable use of historic campus building: Case of cultural property building," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vítor Leal, 2021. "Buildings Energy Efficiency and Innovative Energy Systems," Energies, MDPI, vol. 14(16), pages 1-5, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Tsoumanis & João Formiga & Nuno Bilo & Panagiotis Tsarchopoulos & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "The Smart Evolution of Historical Cities: Integrated Innovative Solutions Supporting the Energy Transition while Respecting Cultural Heritage," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    2. Inmaculada Gallego-Maya & Carlos Rubio-Bellido, 2024. "Use of International Adaptive Thermal Comfort Models as a Strategy for Adjusting the Museum Environments of the Mudejar Pavilion, Seville," Energies, MDPI, vol. 17(21), pages 1-22, November.
    3. Cristina Piselli & Alessio Guastaveglia & Jessica Romanelli & Franco Cotana & Anna Laura Pisello, 2020. "Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study," Energies, MDPI, vol. 13(23), pages 1-18, December.
    4. Nikolaos Ziozas & Angeliki Kitsopoulou & Evangelos Bellos & Petros Iliadis & Dimitra Gonidaki & Komninos Angelakoglou & Nikolaos Nikolopoulos & Silvia Ricciuti & Diego Viesi, 2024. "Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    5. Hanan S. S. Ibrahim & Ahmed Z. Khan & Yehya Serag & Shady Attia, 2021. "Towards Nearly-Zero Energy in Heritage Residential Buildings Retrofitting in Hot, Dry Climates," Sustainability, MDPI, vol. 13(24), pages 1-36, December.
    6. Atinafu, Dimberu G. & Wi, Seunghwan & Yun, Beom Yeol & Kim, Sumin, 2021. "Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage," Energy, Elsevier, vol. 216(C).
    7. Guorui Chen & Li Cheng & Foyuan Li, 2022. "Integrating Sustainability and Users’ Demands in the Retrofit of a University Campus in China," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    8. Marek Borowski, 2022. "Hotel Adapted to the Requirements of an nZEB Building—Thermal Energy Performance and Assessment of Energy Retrofit Plan," Energies, MDPI, vol. 15(17), pages 1-17, August.
    9. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Jo, Ho Hyeon & Kang, Yujin & Yang, Sungwoong & Kim, Young Uk & Yun, Beom Yeol & Chang, Jae D. & Kim, Sumin, 2022. "Application and evaluation of phase change materials for improving photovoltaic power generation efficiency and roof overheating reduction," Renewable Energy, Elsevier, vol. 195(C), pages 1412-1425.
    11. Wu, Xianguo & Li, Xinyi & Qin, Yawei & Xu, Wen & Liu, Yang, 2023. "Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions," Applied Energy, Elsevier, vol. 339(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1475-:d:512956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.