IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp1230-1237.html
   My bibliography  Save this article

Co-ensiling and field wilting investigated as preparation methods for the ensiling of a wet harvested catch crop for biomethane production

Author

Listed:
  • VAN Vlierberghe, C.
  • Carrere, H.
  • Bernet, N.
  • Santa-Catalina, G.
  • Frederic, S.
  • Escudie, R.

Abstract

Early harvested cover crops usually present a high moisture content that makes them difficult to store by ensiling because of effluent production and undesirable butyric fermentation. In order to increase the solid content of ryegrass, field wilting (29.0 %TS) and co-ensiling with wheat straw (27.4% TS) were performed and compared with a direct storage of the crop (18.4% TS). The storage experiments were conducted at lab scale and monitored during 180 days to evaluate the fermentation pathways and changes in microbial community structure and methane potential. The addition of straw did not change the fermentation pathway during the ryegrass silage, while field wilting slowed down and decreased the occurrence of secondary fermentations. Despite the presence of secondary fermentations and VS losses up to 11%, the methane potential was efficiently preserved in all conditions. Wheat straw addition should be considered as an alternative to field wilting when unfavorable weather conditions are met.

Suggested Citation

  • VAN Vlierberghe, C. & Carrere, H. & Bernet, N. & Santa-Catalina, G. & Frederic, S. & Escudie, R., 2022. "Co-ensiling and field wilting investigated as preparation methods for the ensiling of a wet harvested catch crop for biomethane production," Renewable Energy, Elsevier, vol. 195(C), pages 1230-1237.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1230-1237
    DOI: 10.1016/j.renene.2022.06.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Lu & Perschke, Yolanda Maria Lemes & Fontaine, Doline & Ward, Alastair James & Eriksen, Jørgen & Sørensen, Peter & Møller, Henrik Bjarne, 2019. "Co-ensiling of cover crops and barley straw for biogas production," Renewable Energy, Elsevier, vol. 142(C), pages 677-683.
    2. Villa, Raffaella & Ortega Rodriguez, Lelia & Fenech, Cecilia & Anika, Ogemdi Chinwendu, 2020. "Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Nolan, P. & Luostarinen, S. & Doyle, E.M. & O'Kiely, P., 2016. "Anaerobic digestion of perennial ryegrass prepared by cryogenic freezing versus thermal drying methods, using contrasting in vitro batch digestion systems," Renewable Energy, Elsevier, vol. 87(P1), pages 273-278.
    4. McEniry, J. & Allen, E. & Murphy, J.D. & O'Kiely, P., 2014. "Grass for biogas production: The impact of silage fermentation characteristics on methane yield in two contrasting biomethane potential test systems," Renewable Energy, Elsevier, vol. 63(C), pages 524-530.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nolan, Pearl & Doyle, Evelyn M. & Grant, Jim & O'Kiely, Pádraig, 2018. "Upgrading grass biomass during ensiling with contrasting fibrolytic enzyme additives for enhanced methane production," Renewable Energy, Elsevier, vol. 115(C), pages 462-473.
    2. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    3. Dongze Niu & Peng Zhu & Tingting Pan & Changyong Yu & Chunyu Li & Jianjun Ren & Chuncheng Xu, 2022. "Ensiling Improved the Colonization and Degradation Ability of Irpex lacteus in Wheat Straw," IJERPH, MDPI, vol. 19(20), pages 1-10, October.
    4. Mohammad Al-Addous & Motasem N. Saidan & Mathhar Bdour & Mohammad Alnaief, 2018. "Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System," Energies, MDPI, vol. 12(1), pages 1-11, December.
    5. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    8. Feng, Kai & Wang, Qiao & Li, Huan & Zhang, Yangyang & Deng, Zhou & Liu, Jianguo & Du, Xinrui, 2020. "Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates," Renewable Energy, Elsevier, vol. 154(C), pages 385-393.
    9. Nolan, P. & Luostarinen, S. & Doyle, E.M. & O'Kiely, P., 2016. "Anaerobic digestion of perennial ryegrass prepared by cryogenic freezing versus thermal drying methods, using contrasting in vitro batch digestion systems," Renewable Energy, Elsevier, vol. 87(P1), pages 273-278.
    10. Franco, Rúben Teixeira & Buffière, Pierre & Bayard, Rémy, 2018. "Co-ensiling of cattle manure before biogas production: Effects of fermentation stimulants and inhibitors on biomass and methane preservation," Renewable Energy, Elsevier, vol. 121(C), pages 315-323.
    11. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    12. Himanshu, H. & Murphy, J.D. & Grant, J. & O'Kiely, P., 2018. "Synergies from co-digesting grass or clover silages with cattle slurry in in vitro batch anaerobic digestion," Renewable Energy, Elsevier, vol. 127(C), pages 474-480.
    13. Cheng, Guishi & Zhao, Ying & Pan, Shijiu & Wang, Xiaoqiang & Dong, Changqing, 2020. "A comparative life cycle analysis of wheat straw utilization modes in China," Energy, Elsevier, vol. 194(C).
    14. Feng, Kai & Li, Huan & Deng, Zhou & Wang, Qiao & Zhang, Yangyang & Zheng, Chengzhi, 2020. "Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste," Renewable Energy, Elsevier, vol. 146(C), pages 1588-1595.
    15. Villa, Raffaella & Ortega Rodriguez, Lelia & Fenech, Cecilia & Anika, Ogemdi Chinwendu, 2020. "Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Mads Ujarak Sieborg & Brian Dahl Jønson & Søren Ugilt Larsen & Ali Heidarzadeh Vazifehkhoran & Jin Mi Triolo, 2020. "Co-Ensiling of Wheat Straw as an Alternative Pre-Treatment to Chemical, Hydrothermal and Mechanical Methods for Methane Production," Energies, MDPI, vol. 13(16), pages 1-19, August.
    17. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2016. "Considering biomass growth and regeneration in the optimisation of biomass supply chains," Renewable Energy, Elsevier, vol. 87(P2), pages 990-1002.
    18. Giovanni Ferrari & Federico Ioverno & Marco Sozzi & Francesco Marinello & Andrea Pezzuolo, 2021. "Land-Use Change and Bioenergy Production: Soil Consumption and Characterization of Anaerobic Digestion Plants," Energies, MDPI, vol. 14(13), pages 1-14, July.
    19. Krystyna Zielińska & Agata Fabiszewska & Katarzyna Piasecka-Jóźwiak & Renata Choińska, 2021. "Increasing Biogas Yield from Fodder by Microbial Stimulation of Propionic Acid Synthesis in Grass Silages," Energies, MDPI, vol. 14(10), pages 1-12, May.
    20. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Ahmed Eleryan & Safaa Ragab & Amany El Sikaily & Antonio Pantaleo, 2021. "Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment," Energies, MDPI, vol. 14(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1230-1237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.