IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4218-d834107.html
   My bibliography  Save this article

Effectiveness and Feasibility of Market Makers for P2P Electricity Trading

Author

Listed:
  • Shinji Kuno

    (Commodity Business Department, Sumitomo Corporation, Tokyo 100-8601, Japan)

  • Kenji Tanaka

    (Department of Technology Management for Innovation, The University of Tokyo, Tokyo 113-8656, Japan)

  • Yuji Yamada

    (Faculty of Business Sciences, University of Tsukuba, Tokyo 112-0012, Japan)

Abstract

Motivated by the growing demand for distributed energy resources (DERs), peer-to-peer (P2P) electricity markets have been explored worldwide. However, such P2P markets must be balanced in much smaller regions with a lot fewer participants than centralized wholesale electricity markets; hence, the market has inherent problems of low liquidity and price instability. In this study, we propose applying a market maker system to the P2P electricity market and developing an efficient market strategy to increase liquidity and mitigate extreme price fluctuations. To this end, we construct an artificial market simulator for P2P electricity trading and design a market agent and general agents (photovoltaic (PV) generators, consumers, and prosumers) to perform power bidding and contract processing. Moreover, we introduce market-maker agents in this study who follow the regulations set by a market administrator and simultaneously place both sell and buy orders in the same market. We implement two types of bidding strategies for market makers and examine their effects on liquidity improvement and price stabilization as well as profitability, using solar PV generation and consumption data observed in a past demonstration project. It is confirmed that liquidity and price stability may be improved by introducing a market maker although there is a trade-off relationship between these effects and the market maker’s profitability.

Suggested Citation

  • Shinji Kuno & Kenji Tanaka & Yuji Yamada, 2022. "Effectiveness and Feasibility of Market Makers for P2P Electricity Trading," Energies, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4218-:d:834107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    2. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    3. Bhattacharya, Saptarshi & Gupta, Aparna & Kar, Koushik & Owusu, Abena, 2020. "Risk management of renewable power producers from co-dependencies in cash flows," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1081-1093.
    4. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    5. Satyendra Singh & Manoj Fozdar & Hasmat Malik & Irfan Ahmad Khan & Sattam Al Otaibi & Fahad R. Albogamy, 2021. "Impacts of Renewable Sources of Energy on Bid Modeling Strategy in an Emerging Electricity Market Using Oppositional Gravitational Search Algorithm," Energies, MDPI, vol. 14(18), pages 1-19, September.
    6. Michelle Maceas Henao & Jairo José Espinosa Oviedo, 2022. "Bidding Strategy for VPP and Economic Feasibility Study of the Optimal Sizing of Storage Systems to Face the Uncertainty of Solar Generation Modelled with IGDT," Energies, MDPI, vol. 15(3), pages 1-13, January.
    7. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    8. Kanamura, Takashi & Ohashi, Kazuhiko, 2009. "Pricing summer day options by good-deal bounds," Energy Economics, Elsevier, vol. 31(2), pages 289-297, March.
    9. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    10. Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
    11. Bevin-McCrimmon, Fergus & Diaz-Rainey, Ivan & McCarten, Matthew & Sise, Greg, 2018. "Liquidity and risk premia in electricity futures," Energy Economics, Elsevier, vol. 75(C), pages 503-517.
    12. Yuji Yamada & Takuji Matsumoto, 2021. "Going for Derivatives or Forwards? Minimizing Cashflow Fluctuations of Electricity Transactions on Power Markets," Energies, MDPI, vol. 14(21), pages 1-28, November.
    13. Reo Kontani & Kenji Tanaka & Yuji Yamada, 2021. "Feasibility Conditions for Demonstrative Peer-to-Peer Energy Market," Energies, MDPI, vol. 14(21), pages 1-18, November.
    14. Lee, Yongheon & Oren, Shmuel S., 2009. "An equilibrium pricing model for weather derivatives in a multi-commodity setting," Energy Economics, Elsevier, vol. 31(5), pages 702-713, September.
    15. Daishi Sagawa & Kenji Tanaka & Fumiaki Ishida & Hideya Saito & Naoya Takenaga & Seigo Nakamura & Nobuaki Aoki & Misuzu Nameki & Kosuke Saegusa, 2021. "Bidding Agents for PV and Electric Vehicle-Owning Users in the Electricity P2P Trading Market," Energies, MDPI, vol. 14(24), pages 1-17, December.
    16. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    17. Mahvi, M. & Ardehali, M.M., 2011. "Optimal bidding strategy in a competitive electricity market based on agent-based approach and numerical sensitivity analysis," Energy, Elsevier, vol. 36(11), pages 6367-6374.
    18. Matsumoto, Takuji & Yamada, Yuji, 2021. "Simultaneous hedging strategy for price and volume risks in electricity businesses using energy and weather derivatives1," Energy Economics, Elsevier, vol. 95(C).
    19. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    20. Ramiz Qussous & Nick Harder & Anke Weidlich, 2022. "Understanding Power Market Dynamics by Reflecting Market Interrelations and Flexibility-Oriented Bidding Strategies," Energies, MDPI, vol. 15(2), pages 1-24, January.
    21. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    22. Lin, Jason & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets," Applied Energy, Elsevier, vol. 255(C).
    23. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    24. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    25. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    26. Takuji Matsumoto & Yuji Yamada, 2021. "Customized yet Standardized Temperature Derivatives: A Non-Parametric Approach with Suitable Basis Selection for Ensuring Robustness," Energies, MDPI, vol. 14(11), pages 1-24, June.
    27. Li, Shaomao & Park, Chan S., 2018. "Wind power bidding strategy in the short-term electricity market," Energy Economics, Elsevier, vol. 75(C), pages 336-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pratik Mochi & Kartik Pandya & Ricardo Faia & Joao Soares, 2023. "Six-Segment Strategy for Prosumers’ Financial Benefit Maximization in Local Peer-to-Peer Energy Trading," Mathematics, MDPI, vol. 11(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuji Yamada & Takuji Matsumoto, 2021. "Going for Derivatives or Forwards? Minimizing Cashflow Fluctuations of Electricity Transactions on Power Markets," Energies, MDPI, vol. 14(21), pages 1-28, November.
    2. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    3. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.
    4. Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).
    5. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    6. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).
    7. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).
    9. Takuji Matsumoto & Yuji Yamada, 2021. "Customized yet Standardized Temperature Derivatives: A Non-Parametric Approach with Suitable Basis Selection for Ensuring Robustness," Energies, MDPI, vol. 14(11), pages 1-24, June.
    10. Daishi Sagawa & Kenji Tanaka & Fumiaki Ishida & Hideya Saito & Naoya Takenaga & Kosuke Saegusa, 2023. "P2P Electricity Trading Considering User Preferences for Renewable Energy and Demand-Side Shifts," Energies, MDPI, vol. 16(8), pages 1-25, April.
    11. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    13. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    14. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    15. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    16. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    17. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Annegret Henninger & Atefeh Mashatan, 2022. "Distributed Renewable Energy Management: A Gap Analysis and Proposed Blockchain-Based Architecture," JRFM, MDPI, vol. 15(5), pages 1-25, April.
    19. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Wang, Longze & Jiao, Shucen & Xie, Yu & Xia, Shiwei & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2022. "Two-way dynamic pricing mechanism of hydrogen filling stations in electric-hydrogen coupling system enhanced by blockchain," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4218-:d:834107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.