IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp359-370.html
   My bibliography  Save this article

Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions

Author

Listed:
  • He, Jian
  • Li, Hu
  • Xu, Yufei
  • Yang, Song

Abstract

γ-Valerolactone (GVL) is an interesting bio-based platform molecule that is utilized as green solvent and a versatile building block for the synthesis of bio-fuels and chemicals. Herein, an investigation on the efficient production of GVL from biomass-based carbonyl compounds such as furfural, levulinic acid, and its esters using 2-propanol as H-donor and solvent over stable Zr-incorporated mesoporous silica (KIT-5) catalysts was presented. Both Lewis and Brønsted acid sites were generated by the introduction of Zr into KIT-5, and the acid density of the resulting Zr-KIT-5(Si/Zr) could be controlled by simply adjusting Si/Zr molar ratio. Among these bifunctional catalysts, Zr-KIT-5(10) showed superior catalytic performance in the production of GVL (>91% selectivity) from biomass-derived carboxides (ca. 94% conversion), which was demonstrated to positively correlate with its large amount of acidic sites and facile access of active sites to interconnected pores. Moreover, the spent catalyst held about 90% of its original activity in the sixth run. Due to the presence of Brønsted and Lewis dual acidic sites in Zr-KIT-5, the direct conversion of furfural to GVL was also permitted in a single pot via tandem reactions involving hydrogenation, ring-opening, secondary hydrogenation, and subsequent cyclization.

Suggested Citation

  • He, Jian & Li, Hu & Xu, Yufei & Yang, Song, 2020. "Dual acidic mesoporous KIT silicates enable one-pot production of γ-valerolactone from biomass derivatives via cascade reactions," Renewable Energy, Elsevier, vol. 146(C), pages 359-370.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:359-370
    DOI: 10.1016/j.renene.2019.06.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chun-Min & Wu, Shu-Yii, 2016. "From biomass waste to biofuels and biomaterial building blocks," Renewable Energy, Elsevier, vol. 96(PB), pages 1056-1062.
    2. Tang, Xing & Wei, Junnan & Ding, Ning & Sun, Yong & Zeng, Xianhai & Hu, Lei & Liu, Shijie & Lei, Tingzhou & Lin, Lu, 2017. "Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 287-296.
    3. Al Arni, Saleh, 2018. "Comparison of slow and fast pyrolysis for converting biomass into fuel," Renewable Energy, Elsevier, vol. 124(C), pages 197-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Lincai & Huangfu, Xin & Liu, Yao & Liu, Huai & Zhang, Junhua, 2022. "Natural lignocellulose welded Zr–Al bimetallic hybrids for the sustainable conversion of xylose to alkyl levulinate," Renewable Energy, Elsevier, vol. 193(C), pages 357-366.
    2. Anagnostopoulou, Eleni & Lilas, Panagiotis & Diamantopoulou, Perikleia & Fakas, Christos & Krithinakis, Ioannis & Patatsi, Eleni & Gabrielatou, Elpida & van Muyden, Antoine P. & Dyson, Paul J. & Papad, 2022. "Hydrogenation of the pivotal biorefinery platform molecule levulinic acid into renewable fuel γ-valerolactone catalyzed by unprecedented highly active and stable ruthenium nanoparticles in aqueous med," Renewable Energy, Elsevier, vol. 192(C), pages 35-45.
    3. Yao, Yunlong & Yu, Zhiquan & Lu, Chenyang & Sun, Fanfei & Wang, Yao & Sun, Zhichao & Liu, Yingya & Wang, Anjie, 2022. "Highly efficient Cu-based catalysts for selective hydrogenation of furfural: A key role of copper carbide," Renewable Energy, Elsevier, vol. 197(C), pages 69-78.
    4. Dookheh, Maryam & Najafi Chermahini, Alireza & Saraji, Mohammad, 2022. "Organic-inorganic bi-functionalized hybrid KIT-5: A toolbox for catalytic dehydration of xylose to n-hexyl levulinate," Renewable Energy, Elsevier, vol. 200(C), pages 527-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Juan Alvarado-Flores & Jorge Víctor Alcaraz-Vera & María Liliana Ávalos-Rodríguez & Erandini Guzmán-Mejía & José Guadalupe Rutiaga-Quiñones & Luís Fernando Pintor-Ibarra & Santiago José Guevara-M, 2024. "Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification," Energies, MDPI, vol. 17(2), pages 1-21, January.
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    4. Li, Mengzhu & Wei, Junnan & Yan, Guihua & Liu, Huai & Tang, Xing & Sun, Yong & Zeng, Xianhai & Lei, Tingzhou & Lin, Lu, 2020. "Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 916-923.
    5. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    6. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    7. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Qing Yin & Muhan Yu & Xueliang Ma & Ying Liu & Xunzhi Yin, 2023. "The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends," Energies, MDPI, vol. 16(8), pages 1-24, April.
    9. Nokuthula Khanyile & Ndumiso Dlamini & Absalom Masenya & Nothando Clementine Madlala & Sabelo Shezi, 2024. "Preparation of Biofertilizers from Banana Peels: Their Impact on Soil and Crop Enhancement," Agriculture, MDPI, vol. 14(11), pages 1-24, October.
    10. Andromachi Chasioti & Anastasia Zabaniotou, 2024. "An Industrial Perspective for Sustainable Polypropylene Plastic Waste Management via Catalytic Pyrolysis—A Technical Report," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    11. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    12. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    14. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
    15. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    16. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    17. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Zhu, Zongyuan & Xu, Zhen, 2020. "The rational design of biomass-derived carbon materials towards next-generation energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Amini, Negin & Haritos, Victoria S. & Tanksale, Akshat, 2018. "Microwave assisted pretreatment of eucalyptus sawdust enhances enzymatic saccharification and maximizes fermentable sugar yield," Renewable Energy, Elsevier, vol. 127(C), pages 653-660.
    20. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:359-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.