IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004334.html
   My bibliography  Save this article

Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis

Author

Listed:
  • Muñoz-Cerón, Emilio
  • Osorio-Aravena, Juan Carlos
  • Rodríguez-Segura, Francisco Javier
  • Frolova, Marina
  • Ruano-Quesada, Antonio

Abstract

Floating photovoltaic systems (FPV) can be a more sustainable alternative for the energy transition than ground-mounted photovoltaic systems, as they avoid occupying useable land and the power generation is more distributed. This paper presents the first study that calculates the FPV technical potential at the province/municipality level, focusing on water irrigation ponds, which it is a novelty in the literature that usually focuses on large water infrastructures in a national approach. In the province of Jaén (Spain), more than 3000 ponds dedicated to agricultural irrigation have been identified and their surface area and location was obtained. The results, calculated for each pond, reveal that, in a conservative scenario, in which only 25% of their surface area is covered, a minimum of 490 MWp can be installed, which can provide 251% of the province agricultural electricity consumption and 27% of the total electricity needs. This analysis has also been performed at the municipal level, where all possible FPV plants have been aggregated and compared with consumption that would be covered at this scale. Furthermore, this technology brings additional benefits, as it avoids the occupation of 12 km2 of useable land, 8.8·106 m3/year of water evaporated, while creating more than 7000 jobs.

Suggested Citation

  • Muñoz-Cerón, Emilio & Osorio-Aravena, Juan Carlos & Rodríguez-Segura, Francisco Javier & Frolova, Marina & Ruano-Quesada, Antonio, 2023. "Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004334
    DOI: 10.1016/j.energy.2023.127039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).
    2. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    3. Ferrer-Gisbert, Carlos & Ferrán-Gozálvez, José J. & Redón-Santafé, Miguel & Ferrer-Gisbert, Pablo & Sánchez-Romero, Francisco J. & Torregrosa-Soler, Juan Bautista, 2013. "A new photovoltaic floating cover system for water reservoirs," Renewable Energy, Elsevier, vol. 60(C), pages 63-70.
    4. Moraes, Camile A. & Valadão, Giovana F. & Renato, Natalia S. & Botelho, Daniel F. & Oliveira, Augusto C. L. de & Aleman, Catariny C. & Cunha, Fernando F., 2022. "Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin," Renewable Energy, Elsevier, vol. 193(C), pages 264-277.
    5. Juan Carlos Osorio-Aravena & Marina Frolova & Julio Terrados-Cepeda & Emilio Muñoz-Cerón, 2020. "Spatial Energy Planning: A Review," Energies, MDPI, vol. 13(20), pages 1-14, October.
    6. Padilha Campos Lopes, Mariana & Nogueira, Tainan & Santos, Alberto José Leandro & Castelo Branco, David & Pouran, Hamid, 2022. "Technical potential of floating photovoltaic systems on artificial water bodies in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 1023-1033.
    7. Sulaeman, Samer & Brown, Erik & Quispe-Abad, Raul & Müller, Norbert, 2021. "Floating PV system as an alternative pathway to the amazon dam underproduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Lee, Wei-De & Huang, Angela & Xu, Chong-Yu & Guo, Shenglian, 2020. "An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies," Applied Energy, Elsevier, vol. 275(C).
    9. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    10. Stiubiener, Uri & Carneiro da Silva, Thadeu & Trigoso, Federico Bernardino Morante & Benedito, Ricardo da Silva & Teixeira, Julio Carlos, 2020. "PV power generation on hydro dam’s reservoirs in Brazil: A way to improve operational flexibility," Renewable Energy, Elsevier, vol. 150(C), pages 765-776.
    11. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    12. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elminshawy, Nabil A.S. & Osama, Amr & Gagliano, Antonio & Oterkus, Erkan & Tina, Giuseppe Marco, 2024. "A technical and economic evaluation of floating photovoltaic systems in the context of the water-energy nexus," Energy, Elsevier, vol. 303(C).
    2. Arnas Majumder & Amit Kumar & Roberto Innamorati & Costantino Carlo Mastino & Giancarlo Cappellini & Roberto Baccoli & Gianluca Gatto, 2023. "Cooling Methods for Standard and Floating PV Panels," Energies, MDPI, vol. 16(24), pages 1-28, December.
    3. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.
    3. Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    4. Bai, Bo & Xiong, Siqin & Ma, Xiaoming & Liao, Xiawei, 2024. "Assessment of floating solar photovoltaic potential in China," Renewable Energy, Elsevier, vol. 220(C).
    5. Piancó, Felipe & Moraes, Leo & Prazeres, Igor dos & Lima, Antônio Guilherme Garcia & Bessa, João Gabriel & Micheli, Leonardo & Fernández, Eduardo & Almonacid, Florencia, 2022. "Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study," Renewable Energy, Elsevier, vol. 201(P1), pages 85-95.
    6. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    7. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    8. Moraes, Camile A. & Valadão, Giovana F. & Renato, Natalia S. & Botelho, Daniel F. & Oliveira, Augusto C. L. de & Aleman, Catariny C. & Cunha, Fernando F., 2022. "Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin," Renewable Energy, Elsevier, vol. 193(C), pages 264-277.
    9. Vidović, V. & Krajačić, G. & Matak, N. & Stunjek, G. & Mimica, M., 2023. "Review of the potentials for implementation of floating solar panels on lakes and water reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. Maier, Rachel & Lütz, Luna & Risch, Stanley & Kullmann, Felix & Weinand, Jann & Stolten, Detlef, 2024. "Potential of floating, parking, and agri photovoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    11. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    12. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    13. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    14. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    15. Yilmaz, Osman Salih & Ateş, Ali Murat & Gülgen, Fatih, 2023. "A novel approach suggestion for assessing the impact of topographic shading on the estimation of the floating photovoltaic technical potential," Energy, Elsevier, vol. 283(C).
    16. Kulat, Muhammed Imran & Tosun, Kursad & Karaveli, Abdullah Bugrahan & Yucel, Ismail & Akinoglu, Bulent Gultekin, 2023. "A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey," Renewable Energy, Elsevier, vol. 206(C), pages 694-709.
    17. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    18. Fernández-Solas, Álvaro & Fernández-Ocaña, Ana M. & Almonacid, Florencia & Fernández, Eduardo F., 2023. "Potential of agrivoltaics systems into olive groves in the Mediterranean region," Applied Energy, Elsevier, vol. 352(C).
    19. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    20. Yevang Nhiavue & Han Soo Lee & Sylvester William Chisale & Jonathan Salar Cabrera, 2022. "Prioritization of Renewable Energy for Sustainable Electricity Generation and an Assessment of Floating Photovoltaic Potential in Lao PDR," Energies, MDPI, vol. 15(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.