IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v111y2019icp157-169.html
   My bibliography  Save this article

Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil

Author

Listed:
  • Garlet, Taís Bisognin
  • Ribeiro, José Luis Duarte
  • de Souza Savian, Fernando
  • Mairesse Siluk, Julio Cezar

Abstract

Photovoltaic (PV) energy has been identified as one of the main energy sources in transition from generation of electricity from non-renewable sources to renewable sources. In the Southern region of Brazil, despite the favorable conditions for implementation of distributed generation of photovoltaic energy, the installed capacity is much lower than the existing generation potential, evidencing the presence of factors that hinder the greater adoption and diffusion of this technology. Thus, this article identifies the panorama of distributed generation of photovoltaic energy and barriers that compromise its greater diffusion in the Southern region of Brazil, based on existing literature and qualitative interviews with professionals of the electricity sector. Results showed that this source of solar energy is expected to grow, but much remains to be done to consolidate it in the energy matrix, given the existence of technical, economic, social, managerial and political barriers. Among the main barriers identified are the poor quality of photovoltaic systems, the high cost of initial investment, the dependence on financing for purchase of solar panels, consumer culture, lack of knowledge about photovoltaic technology, the inefficient after-sales services, the dependence on imports of solar panels from China and lack of policies to encourage photovoltaic generation. The results of this study allow the understanding of the diffusion of the distributed generation of photovoltaic energy in countries of emerging economies or in regions where the implementation of PV systems is still incipient.

Suggested Citation

  • Garlet, Taís Bisognin & Ribeiro, José Luis Duarte & de Souza Savian, Fernando & Mairesse Siluk, Julio Cezar, 2019. "Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 157-169.
  • Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:157-169
    DOI: 10.1016/j.rser.2019.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119303193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    2. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    3. Palm, Jenny, 2018. "Household installation of solar panels – Motives and barriers in a 10-year perspective," Energy Policy, Elsevier, vol. 113(C), pages 1-8.
    4. Freitas, F.F. & De Souza, S.S. & Ferreira, L.R.A. & Otto, R.B. & Alessio, F.J. & De Souza, S.N.M. & Venturini, O.J. & Ando Junior, O.H., 2019. "The Brazilian market of distributed biogas generation: Overview, technological development and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 146-157.
    5. Bosetti, Valentina & Catenacci, Michela & Fiorese, Giulia & Verdolini, Elena, 2012. "The future prospect of PV and CSP solar technologies: An expert elicitation survey," Energy Policy, Elsevier, vol. 49(C), pages 308-317.
    6. Carstens, Danielle Denes dos Santos & Cunha, Sieglinde Kindl da, 2019. "Challenges and opportunities for the growth of solar photovoltaic energy in Brazil," Energy Policy, Elsevier, vol. 125(C), pages 396-404.
    7. Manju, S. & Sagar, Netramani, 2017. "Progressing towards the development of sustainable energy: A critical review on the current status, applications, developmental barriers and prospects of solar photovoltaic systems in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 298-313.
    8. Zhai, Pei & Williams, Eric D., 2012. "Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model," Renewable Energy, Elsevier, vol. 41(C), pages 350-357.
    9. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
    10. Cho, Youngsang & Koo, Yoonmo, 2012. "Investigation of the effect of secondary market on the diffusion of innovation," Technological Forecasting and Social Change, Elsevier, vol. 79(7), pages 1362-1371.
    11. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    12. Orioli, Aldo & Di Gangi, Alessandra, 2014. "Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings," Applied Energy, Elsevier, vol. 113(C), pages 955-969.
    13. Sahoo, Sarat Kumar, 2016. "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 927-939.
    14. Karakaya, Emrah & Sriwannawit, Pranpreya, 2015. "Barriers to the adoption of photovoltaic systems: The state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 60-66.
    15. Hossain, M.F. & Hossain, S. & Uddin, M.J., 2017. "Renewable energy: Prospects and trends in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 44-49.
    16. Devabhaktuni, Vijay & Alam, Mansoor & Shekara Sreenadh Reddy Depuru, Soma & Green, Robert C. & Nims, Douglas & Near, Craig, 2013. "Solar energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 555-564.
    17. Tanaka, Kenta & Sekito, Mai & Managi, Shunsuke & Kaneko, Shinji & Rai, Varun, 2017. "Decision-making governance for purchases of solar photovoltaic systems in Japan," Energy Policy, Elsevier, vol. 111(C), pages 75-84.
    18. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    19. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    20. Zou, Hongyang & Du, Huibin & Ren, Jingzheng & Sovacool, Benjamin K. & Zhang, Yongjie & Mao, Guozhu, 2017. "Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 197-206.
    21. Martins, F.R. & Rüther, R. & Pereira, E.B. & Abreu, S.L., 2008. "Solar energy scenarios in Brazil. Part two: Photovoltaics applications," Energy Policy, Elsevier, vol. 36(8), pages 2855-2867, August.
    22. Zhang, Xiaoling & Shen, Liyin & Chan, Sum Yee, 2012. "The diffusion of solar energy use in HK: What are the barriers?," Energy Policy, Elsevier, vol. 41(C), pages 241-249.
    23. Frambach, Ruud T. & Schillewaert, Niels, 2002. "Organizational innovation adoption: a multi-level framework of determinants and opportunities for future research," Journal of Business Research, Elsevier, vol. 55(2), pages 163-176, February.
    24. Curtius, Hans Christoph, 2018. "The adoption of building-integrated photovoltaics: barriers and facilitators," Renewable Energy, Elsevier, vol. 126(C), pages 783-790.
    25. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    26. Silveira, Jose Luz & Tuna, Celso Eduardo & Lamas, Wendell de Queiroz, 2013. "The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 133-141.
    27. de Faria, Haroldo & Trigoso, Federico B.M. & Cavalcanti, João A.M., 2017. "Review of distributed generation with photovoltaic grid connected systems in Brazil: Challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 469-475.
    28. Martins, F.R. & Pereira, E.B. & Silva, S.A.B. & Abreu, S.L. & Colle, Sergio, 2008. "Solar energy scenarios in Brazil, Part one: Resource assessment," Energy Policy, Elsevier, vol. 36(8), pages 2843-2854, August.
    29. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    30. Düştegör, Dilek & Sultana, Nahid & Felemban, Noor & Al Qahtani, Deemah, 2018. "A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications," Utilities Policy, Elsevier, vol. 50(C), pages 26-39.
    31. dos Santos, L.L.C. & Canha, L.N. & Bernardon, D.P., 2018. "Projection of the diffusion of photovoltaic systems in residential low voltage consumers," Renewable Energy, Elsevier, vol. 116(PA), pages 384-401.
    32. Coram, Alex & Katzner, Donald W., 2018. "Reducing fossil-fuel emissions: Dynamic paths for alternative energy-producing technologies," Energy Economics, Elsevier, vol. 70(C), pages 179-189.
    33. Camilo, Henrique Fernandes & Udaeta, Miguel Edgar Morales & Veiga Gimenes, André Luiz & Grimoni, Jose Aquiles Baesso, 2017. "Assessment of photovoltaic distributed generation – Issues of grid connected systems through the consumer side applied to a case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 712-719.
    34. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    35. Dias, César Luiz de Azevedo & Castelo Branco, David Alves & Arouca, Maurício Cardoso & Loureiro Legey, Luiz Fernando, 2017. "Performance estimation of photovoltaic technologies in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 367-375.
    36. Viana, Matheus Sabino & Manassero, Giovanni & Udaeta, Miguel E.M., 2018. "Analysis of demand response and photovoltaic distributed generation as resources for power utility planning," Applied Energy, Elsevier, vol. 217(C), pages 456-466.
    37. Islam, Towhidul & Meade, Nigel, 2013. "The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation," Energy Policy, Elsevier, vol. 55(C), pages 521-530.
    38. Diniz, Antonia Sônia A.C. & Neto, Lauro V.B. Machado & Camara, Carlos F. & Morais, Paulo & Cabral, Claudia V.T. & Filho, Delly Oliveira & Ravinetti, Regina F. & França, Edson D. & Cassini, Denio A. & , 2011. "Review of the photovoltaic energy program in the state of Minas Gerais, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2696-2706, August.
    39. Brooks, Chris & Urmee, Tania, 2014. "Importance of individual capacity building for successful solar program implementation: A case study in the Philippines," Renewable Energy, Elsevier, vol. 71(C), pages 176-184.
    40. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    41. Nepal, Rabindra & Jamasb, Tooraj, 2012. "Reforming small electricity systems under political instability: The case of Nepal," Energy Policy, Elsevier, vol. 40(C), pages 242-251.
    42. D’Agostino, Anthony L. & Sovacool, Benjamin K. & Bambawale, Malavika Jain, 2011. "And then what happened? A retrospective appraisal of China’s Renewable Energy Development Project (REDP)," Renewable Energy, Elsevier, vol. 36(11), pages 3154-3165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    2. Felipe Fehlberg Herrmann & Ana Paula Barbosa-Povoa & Maria Angela Butturi & Simona Marinelli & Miguel Afonso Sellitto, 2021. "Green Supply Chain Management: Conceptual Framework and Models for Analysis," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    3. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Carvalho, N.B. & Berrêdo Viana, D. & Muylaert de Araújo, M.S. & Lampreia, J. & Gomes, M.S.P. & Freitas, M.A.V., 2020. "How likely is Brazil to achieve its NDC commitments in the energy sector? A review on Brazilian low-carbon energy perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Shahriyar Nasirov & Paula Gonzalez & Jose Opazo & Carlos Silva, 2023. "Development of Rooftop Solar under Netbilling in Chile: Analysis of Main Barriers from Project Developers’ Perspectives," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    6. Marcus Vinícius Coelho Vieira da Costa & Osmar Luiz Ferreira de Carvalho & Alex Gois Orlandi & Issao Hirata & Anesmar Olino de Albuquerque & Felipe Vilarinho e Silva & Renato Fontes Guimarães & Robert, 2021. "Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation," Energies, MDPI, vol. 14(10), pages 1-15, May.
    7. Zhang, Haoran & Yan, Jinyue & Yu, Qing & Obersteiner, Michael & Li, Wenjing & Chen, Jinyu & Zhang, Qiong & Jiang, Mingkun & Wallin, Fredrik & Song, Xuan & Wu, Jiang & Wang, Xin & Shibasaki, Ryosuke, 2021. "1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown," Applied Energy, Elsevier, vol. 283(C).
    8. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    9. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    10. Noriko Akita & Yasuo Ohe & Shoko Araki & Makoto Yokohari & Toru Terada & Jay Bolthouse, 2020. "Managing Conflicts with Local Communities over the Introduction of Renewable Energy: The Solar-Rush Experience in Japan," Land, MDPI, vol. 9(9), pages 1-20, August.
    11. Su, Xiaoning & Liu, Pengfei & Mei, Yingdan & Chen, Jiaru, 2023. "The role of rural cooperatives in the development of rural household photovoltaics: An evolutionary game study," Energy Economics, Elsevier, vol. 126(C).
    12. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Rosa, Carmen Brum & Rigo, Paula Donaduzzi & Rediske, Graciele & Moccellin, Ana Paula & Mairesse Siluk, Julio Cezar & Michels, Leandro, 2021. "How to measure organizational performance of distributed generation in electric utilities? The Brazilian case," Renewable Energy, Elsevier, vol. 169(C), pages 191-203.
    14. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    15. Wu, Yunna & Xu, Minjia & Tao, Yao & He, Jiaming & Liao, Yijia & Wu, Man, 2022. "A critical barrier analysis framework to the development of rural distributed PV in China," Energy, Elsevier, vol. 245(C).
    16. Anatolyy Dzyuba & Irina Solovyeva & Aleksandr Semikolenov, 2023. "Raising the Resilience of Industrial Manufacturers through Implementing Natural Gas-Fired Distributed Energy Resource Systems with Demand Response," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    17. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    2. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    3. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    4. dos Santos, L.L.C. & Canha, L.N. & Bernardon, D.P., 2018. "Projection of the diffusion of photovoltaic systems in residential low voltage consumers," Renewable Energy, Elsevier, vol. 116(PA), pages 384-401.
    5. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    6. Marcus Vinícius Coelho Vieira da Costa & Osmar Luiz Ferreira de Carvalho & Alex Gois Orlandi & Issao Hirata & Anesmar Olino de Albuquerque & Felipe Vilarinho e Silva & Renato Fontes Guimarães & Robert, 2021. "Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation," Energies, MDPI, vol. 14(10), pages 1-15, May.
    7. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    8. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).
    9. Vilaça Gomes, P. & Knak Neto, N. & Carvalho, L. & Sumaili, J. & Saraiva, J.T. & Dias, B.H. & Miranda, V. & Souza, S.M., 2018. "Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues," Energy Policy, Elsevier, vol. 115(C), pages 199-206.
    10. Londo, Marc & Matton, Robin & Usmani, Omar & van Klaveren, Marieke & Tigchelaar, Casper & Brunsting, Suzanne, 2020. "Alternatives for current net metering policy for solar PV in the Netherlands: A comparison of impacts on business case and purchasing behaviour of private homeowners, and on governmental costs," Renewable Energy, Elsevier, vol. 147(P1), pages 903-915.
    11. Karakaya, Emrah & Sriwannawit, Pranpreya, 2015. "Barriers to the adoption of photovoltaic systems: The state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 60-66.
    12. Karakaya, Emrah & Hidalgo, Antonio & Nuur, Cali, 2015. "Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1090-1098.
    13. Kirsi Kotilainen & Ulla A. Saari, 2018. "Policy Influence on Consumers’ Evolution into Prosumers—Empirical Findings from an Exploratory Survey in Europe," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    14. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    15. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    16. Thipnapa Huansuriya & Kris Ariyabuddhiphongs, 2023. "Predicting Residential Photovoltaic Adoption Intention of Potential Prosumers in Thailand: A Theory of Planned Behavior Model," Energies, MDPI, vol. 16(17), pages 1-20, August.
    17. Williams, Eric & Carvalho, Rexon & Hittinger, Eric & Ronnenberg, Matthew, 2020. "Empirical development of parsimonious model for international diffusion of residential solar," Renewable Energy, Elsevier, vol. 150(C), pages 570-577.
    18. Reindl, K. & Palm, J., 2021. "Installing PV: Barriers and enablers experienced by non-residential property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Rosa, Carmen B. & Wendt, João Francisco M. & Chaves, Daniel M.S. & Thomasi, Virginia & Michels, Leandro & Siluk, Julio Cezar M., 2020. "Mathematical modeling for the measurement of the competitiveness index of Brazil south urban sectors for installation of photovoltaic systems," Energy Policy, Elsevier, vol. 136(C).
    20. Strazzera, Elisabetta & Meleddu, Daniela & Contu, Davide & Fornara, Ferdinando, 2024. "Willingness to pay for innovative heating/cooling systems: A comprehensive appraisal of drivers and barriers to adoption in Ireland and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:157-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.