IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp606-616.html
   My bibliography  Save this article

A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method

Author

Listed:
  • Dong, Yan
  • Han, Han
  • Wang, Fuqiang
  • Zhang, Yingjie
  • Cheng, Ziming
  • Shi, Xuhang
  • Yan, Yuying

Abstract

As a passive cooling method without extra energy expenditure, the passive daytime radiative cooling (PDRC) technology has the potential for wide range of applications. Manufacturing PDRC materials with low-cost and high solar band reflectivity are still facing challenges for their commercialization. In the present study, we used the spectral band complementarity method to realize high reflectivity in the sunlight band and excellent cooling performance of the PDRC coating, with a simple, inexpensive, and scalable preparation process. PDRC coating with a solar reflectance of 97.6% was demonstrated by properly designed BaSO4, CaCO3, and SiO2 particles. During the outdoor test, the average daytime temperature of PDRC coating was 8.3 °C lower than the air temperature in the cavity, and 5.5 °C lower than that of commercial white paints. Under the thermal equilibrium condition, the theoretical radiative cooling power of PDRC coating at nighttime and daytime can reach 119.3 W/m2 and 94.3 W/m2, respectively. The assessment results indicate that the PDRC coating has the potential for large-scale commercial production, with a low-cost (approximately $0.5/m2) and simple manufacturing process. This study can provide new ideas for the design and preparation of high-performance low-cost PDRC materials.

Suggested Citation

  • Dong, Yan & Han, Han & Wang, Fuqiang & Zhang, Yingjie & Cheng, Ziming & Shi, Xuhang & Yan, Yuying, 2022. "A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method," Renewable Energy, Elsevier, vol. 192(C), pages 606-616.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:606-616
    DOI: 10.1016/j.renene.2022.04.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yuanting & Qiu, Yu & Li, Qing & Henry, Asegun, 2022. "Optical-thermal-mechanical characteristics of an ultra-high-temperature graphite receiver designed for concentrating solar power," Applied Energy, Elsevier, vol. 307(C).
    2. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    3. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    4. Li, Boyu & Hong, Wenpeng & Li, Haoran & Lan, Jingrui & Zi, Junliang, 2022. "Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis," Energy, Elsevier, vol. 242(C).
    5. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    6. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    7. Zhang, Chunxiao & Shen, Chao & Wei, Shen & Zhang, Yingbo & Sun, Cheng, 2021. "Flexible management of heat/electricity of novel PV/T systems with spectrum regulation by Ag nanofluids," Energy, Elsevier, vol. 221(C).
    8. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Zevenhoven, Ron & Fält, Martin, 2018. "Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach," Energy, Elsevier, vol. 152(C), pages 27-33.
    10. Dong, Yan & Wang, Fuqiang & Zhang, Yaqi & Shi, Xuhang & Zhang, Aoyu & Shuai, Yong, 2022. "Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure," Energy, Elsevier, vol. 238(PB).
    11. Jeong, Shin Young & Tso, Chi Yan & Ha, Jimyeong & Wong, Yuk Ming & Chao, Christopher Y.H. & Huang, Baoling & Qiu, Huihe, 2020. "Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate," Renewable Energy, Elsevier, vol. 146(C), pages 44-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Vilà, Roger & Medrano, Marc & Castell, Albert, 2023. "Climate change influences in the determination of the maximum power potential of radiative cooling. Evolution and seasonal study in Europe," Renewable Energy, Elsevier, vol. 212(C), pages 500-513.
    3. Chen, Jianheng & Lu, Lin & Gong, Quan, 2023. "Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality," Applied Energy, Elsevier, vol. 349(C).
    4. Dong, Yan & Zou, Yanan & Li, Xiang & Wang, Fuqiang & Cheng, Ziming & Meng, Weifeng & Chen, Lingling & Xiang, Yang & Wang, Tong & Yan, Yuying, 2023. "Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application," Applied Energy, Elsevier, vol. 344(C).
    5. Jiangbo Wu & Tao Ma & Xiaoze Du & Shujun Liu & Ziyi Sui & Xinzhen Xia, 2023. "Novel Passive Radiation Cooling Materials with High Emissivity Discovered by FDTD Method," Energies, MDPI, vol. 16(4), pages 1-14, February.
    6. Seo, Junyong & Choi, Minwoo & Yoon, Siwon & Lee, Bong Jae, 2023. "Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yan & Zou, Yanan & Li, Xiang & Wang, Fuqiang & Cheng, Ziming & Meng, Weifeng & Chen, Lingling & Xiang, Yang & Wang, Tong & Yan, Yuying, 2023. "Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application," Applied Energy, Elsevier, vol. 344(C).
    2. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Hong, Wenpeng & Li, Boyu & Li, Haoran & Zi, Junliang, 2023. "Output energy distribution potential enabled by a nanofluid-assisted hybrid generator," Energy, Elsevier, vol. 265(C).
    4. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    6. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
    7. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.
    8. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    10. Zhang, Yi & Tennakoon, Thilhara & Chan, Yin Hoi & Chan, Ka Chung & Fu, Sau Chung & Tso, Chi Yan & Yu, Kin Man & Huang, Bao Ling & Yao, Shu Huai & Qiu, Hui He & Chao, Christopher Y.H., 2022. "Energy consumption modelling of a passive hybrid system for office buildings in different climates," Energy, Elsevier, vol. 239(PA).
    11. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    12. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    14. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Khosa, Azhar Abbas & Meng, Chunfeng, 2022. "The stability, optical behavior optimization of Ag@SiO2 nanofluids and their application in spectral splitting photovoltaic/thermal receivers," Renewable Energy, Elsevier, vol. 190(C), pages 865-878.
    15. Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
    16. Lv, Song & Ji, Yishuang & Ji, Yitong & Qian, Zuoqin & Ren, Juwen & Zhang, Bolong & Lai, Yin & Yang, Jiahao & Chang, Zhihao, 2022. "Experimental and numerical comparative investigation on 24h radiative cooling performance of a simple organic composite film," Energy, Elsevier, vol. 261(PA).
    17. Yu, Xinxian & Yao, Fengju & Huang, Wenjie & Xu, Dongyan & Chen, Chun, 2022. "Enhanced radiative cooling paint with broken glass bubbles," Renewable Energy, Elsevier, vol. 194(C), pages 129-136.
    18. Chen, Xudong & Li, Chunzhe & Yang, Zhenning & Dong, Yan & Wang, Fuqiang & Cheng, Ziming & Yang, Chun, 2024. "Golf-ball-inspired phase change material capsule: Experimental and numerical simulation analysis of flow characteristics and thermal performance," Energy, Elsevier, vol. 293(C).
    19. Lin Liang & Shengxi Bai & Kaixin Lin & Chui Ting Kwok & Siru Chen & Yihao Zhu & Chi Yan Tso, 2024. "Advancing Sustainable Development: Broad Applications of Passive Radiative Cooling," Sustainability, MDPI, vol. 16(6), pages 1-27, March.
    20. Xia, Xiaokang & Gu, Tao & Fan, Miaomiao & Chen, Haifei & Yu, Bendong, 2022. "A novel solar PV/T driven photocatalytic multifunctional system: Concept proposal and performance investigation," Renewable Energy, Elsevier, vol. 196(C), pages 1127-1141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:606-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.