IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120305918.html
   My bibliography  Save this article

Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India

Author

Listed:
  • Bijarniya, Jay Prakash
  • Sarkar, Jahar

Abstract

In the long future, dependency on conventional air conditioning systems for thermal comfort certainly needs to be reduced, with alternate strategies like passive photonic radiative cooling. Recent metamaterial development with highly reflective in the solar spectrum pushes the radiative cooling technique toward application assessment. In this paper, the photonic radiative cooler performance is analyzed for year 2019 at various Indian locations considering the diversity of climate and forecasted for year 2030. The effect of three types of climate change is considered: geographical, seasonal and year-wise. Some photonic coolers with different emissive profiles are also compared. As the radiative cooling depends upon air temperature, humidity, wind speed and solar flux intensity, the effects of influencing climatic or weather parameters during summer months are studied extensively and major performance influencing factors are identified. Photonic radiative cooler performance in energy-saving as rooftop envelope assisted to conventional air conditioning system is assessed and observed cooling energy saving of 25–32 kWhth/month for selected locations. Study reveals that the windshield is the necessary condition to get net cooling flux through the rooftop. The reduction of cooling load on active systems of 34% is observed for low humidity locations with the integration of radiative cooler as a roof envelope.

Suggested Citation

  • Bijarniya, Jay Prakash & Sarkar, Jahar, 2020. "Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120305918
    DOI: 10.1016/j.rser.2020.110303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Weimin & Fernandez, Nick & Katipamula, Srinivas & Alvine, Kyle, 2018. "Performance assessment of a photonic radiative cooling system for office buildings," Renewable Energy, Elsevier, vol. 118(C), pages 265-277.
    2. Jeong, Shin Young & Tso, Chi Yan & Ha, Jimyeong & Wong, Yuk Ming & Chao, Christopher Y.H. & Huang, Baoling & Qiu, Huihe, 2020. "Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate," Renewable Energy, Elsevier, vol. 146(C), pages 44-55.
    3. Lyu Zhou & Haomin Song & Jianwei Liang & Matthew Singer & Ming Zhou & Edgars Stegenburgs & Nan Zhang & Chen Xu & Tien Ng & Zongfu Yu & Boon Ooi & Qiaoqiang Gan, 2019. "A polydimethylsiloxane-coated metal structure for all-day radiative cooling," Nature Sustainability, Nature, vol. 2(8), pages 718-724, August.
    4. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    5. Eli A. Goldstein & Aaswath P. Raman & Shanhui Fan, 2017. "Sub-ambient non-evaporative fluid cooling with the sky," Nature Energy, Nature, vol. 2(9), pages 1-7, September.
    6. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    7. Liu, Junwei & Zhou, Zhihua & Zhang, Debao & Jiao, Shifei & Zhang, Ying & Luo, Longfei & Zhang, Zhuofen & Gao, Feng, 2020. "Field investigation and performance evaluation of sub-ambient radiative cooling in low latitude seaside," Renewable Energy, Elsevier, vol. 155(C), pages 90-99.
    8. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    9. Hanif, M. & Mahlia, T.M.I. & Zare, A. & Saksahdan, T.J. & Metselaar, H.S.C., 2014. "Potential energy savings by radiative cooling system for a building in tropical climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 642-650.
    10. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ananthakrishnan, K. & Bijarniya, Jay Prakash & Sarkar, Jahar, 2021. "Energy, exergy, economic and ecological analyses of a diurnal radiative water cooler," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    3. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    5. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    8. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    9. Han, Tian & Zhou, Zhihua & Du, Yahui & Wang, Wufan & Wang, Cheng & Yang, Xueqing & Liu, Junwei & Yang, Haibin & Cui, Hongzhi & Yan, Jinyue, 2024. "Advances in radiative sky cooling based on the promising electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    10. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    11. Feng, Chi & Lei, Yue & Huang, Xianqi & Zhang, Weidong & Feng, Ya & Zheng, Xing, 2022. "Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating," Renewable Energy, Elsevier, vol. 193(C), pages 634-644.
    12. Linlin Guo & Zhuqing Liang & Wenhao Li & Can Yang & Endong Wang, 2024. "The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    13. Wong, Ross Y.M. & Tso, C.Y. & Chao, Christopher Y.H., 2021. "Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system," Renewable Energy, Elsevier, vol. 180(C), pages 700-711.
    14. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    15. Ananthakrishnan, K. & Bijarniya, Jay Prakash & Sarkar, Jahar, 2021. "Energy, exergy, economic and ecological analyses of a diurnal radiative water cooler," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    17. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    18. Li, Haoran & Zhang, Kai & Shi, Zijie & Jiang, Kaiyu & Wu, Bingyang & Ye, Peiliang, 2023. "Cooling benefit of implementing radiative cooling on a city-scale," Renewable Energy, Elsevier, vol. 212(C), pages 372-381.
    19. Chen, Jianheng & Lu, Lin & Gong, Quan, 2023. "Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality," Applied Energy, Elsevier, vol. 349(C).
    20. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120305918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.