IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp447-458.html
   My bibliography  Save this article

Investigations on cellularization instability of 2-ethylfuran

Author

Listed:
  • Xu, Cangsu
  • Liu, Weinan
  • Oppong, Francis
  • Wang, Qianwen
  • Sun, Zuo-Yu
  • Li, Xiaolu

Abstract

2-ethylfuran (2 EF) has potential as a biofuel for combustion devices. To apply it efficiently in combustion devices, it is necessary to study the combustion characteristics such as the intrinsic flame instability of 2 EF. The intrinsic flame instabilities of 2 EF outwardly propagating spherical premixed flames were theoretically and experimentally studied at initial temperatures of 373, 403, and 433 K, pressures of 1, 2, and 4 bar, and equivalence ratios of 0.7–1.4. The flame topography at different stages of flame development was examined. When large cracks appeared on the flame front surface, resulting in small cracks and new cell generation, the flame became unstable. Linear stability theory was used to investigate the effects of hydrodynamic instability and thermal-diffusion instability on the flame. The critical stability curves were plotted, and the theoretical calculations were consistent with the experimental results. The results showed that the best fits for the theoretical and experimental results were n = 2πPe/48 and n = 2πPe/80, respectively. The critical radius and Peclet number are calculated and discussed. The critical Peclet number decreased as the equivalence ratio increased.

Suggested Citation

  • Xu, Cangsu & Liu, Weinan & Oppong, Francis & Wang, Qianwen & Sun, Zuo-Yu & Li, Xiaolu, 2022. "Investigations on cellularization instability of 2-ethylfuran," Renewable Energy, Elsevier, vol. 191(C), pages 447-458.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:447-458
    DOI: 10.1016/j.renene.2022.04.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Zhiqiang & Zhu, Zhennan & Yu, Wenbin & Liang, Kun & Zuo, Zinong & Xia, Qi & Zeng, Dongjian, 2020. "On the equivalent effect of initial temperature and pressure coupling on the flame speed of methane premixed combustion under dilution," Energy, Elsevier, vol. 207(C).
    2. Huang, Sheng & Zhang, Yu & Huang, Ronghua & Xu, Shijie & Ma, Yinjie & Wang, Zhaowen & Zhang, Xinhua, 2019. "Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames," Energy, Elsevier, vol. 171(C), pages 161-169.
    3. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    4. Broumand, Mohsen & Khan, Muhammad Shahzeb & Yun, Sean & Hong, Zekai & Thomson, Murray J., 2021. "Feasibility of running a micro gas turbine on wood-derived fast pyrolysis bio-oils: Effect of the fuel spray formation and preparation," Renewable Energy, Elsevier, vol. 178(C), pages 775-784.
    5. Issayev, Gani & Giri, Binod Raj & Elbaz, Ayman M. & Shrestha, Krishna P. & Mauss, Fabian & Roberts, William L. & Farooq, Aamir, 2022. "Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: A promising low carbon fuel blend," Renewable Energy, Elsevier, vol. 181(C), pages 1353-1370.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zong, Chao & Ji, Chenzhen & Cheng, Jiaying & Zhu, Tong & Guo, Desan & Li, Chengqin & Duan, Fei, 2022. "Toward off-design loads: Investigations on combustion and emissions characteristics of a micro gas turbine combustor by external combustion-air adjustments," Energy, Elsevier, vol. 253(C).
    2. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    3. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    4. Zhao, Haoran & Wang, Jinhua & Cai, Xiao & Dai, Hongchao & Liu, Xiao & Li, Gang & Huang, Zuohua, 2023. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames," Energy, Elsevier, vol. 283(C).
    5. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2021. "Laminar Burning Velocity and Ignition Delay Time of Oxygenated Biofuel," Energies, MDPI, vol. 14(12), pages 1-26, June.
    6. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    7. Zhennan Zhu & Kun Liang & Xinwen Chen & Zhongwei Meng & Wenbin He & Hao Song, 2020. "Laminar Flame Characteristics of Premixed Methanol–Water–Air Mixture," Energies, MDPI, vol. 13(24), pages 1-13, December.
    8. Xiaobei Cheng & Xinhua Zhang & Zhaowen Wang & Huimin Wu & Zhaowu Wang & Jyh-Yuan Chen, 2021. "Effect of Microwave Pulses on the Morphology and Development of Spark-Ignited Flame Kernel," Energies, MDPI, vol. 14(19), pages 1-19, September.
    9. Chen, Chao & Liang, Rui & Ge, Yadong & Li, Jian & Yan, Beibei & Cheng, Zhanjun & Tao, Junyu & Wang, Zhenyu & Li, Meng & Chen, Guanyi, 2022. "Fast characterization of biomass pyrolysis oil via combination of ATR-FTIR and machine learning models," Renewable Energy, Elsevier, vol. 194(C), pages 220-231.
    10. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2020. "The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols," Energies, MDPI, vol. 13(15), pages 1-14, July.
    11. Zheng, Shu & Liu, Hao & He, Yuzhen & Yang, Yu & Sui, Ran & Lu, Qiang, 2023. "Combustion of biomass pyrolysis gas: Roles of radiation reabsorption and water content," Renewable Energy, Elsevier, vol. 205(C), pages 864-872.
    12. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    13. Binod Raj Giri & Krishna Prasad Shrestha & Tam V.-T. Mai & Sushant Giri & Mohammad Adil & R. Thirumaleswara Naik & Fabian Mauss & Lam Kim Huynh, 2023. "A Theoretical Study of NH 2 Radical Reactions with Propane and Its Kinetic Implications in NH 3 -Propane Blends’ Oxidation," Energies, MDPI, vol. 16(16), pages 1-19, August.
    14. Wang, Xiaorong & Yan, Chenzhao & Zhang, Yan & Guo, Hongzhan & Xu, Cangsu & Jiang, Genzhu, 2024. "Laminar and kinetic burning characteristics of ethanol/methane/hydrogen fuel: Experimental and numerical analysis," Renewable Energy, Elsevier, vol. 227(C).
    15. Shi, Guodong & Li, Pengfei & Li, Kesheng & Hu, Fan & Liu, Qian & Zhou, Haoyu & Liu, Zhaohui, 2023. "Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres," Energy, Elsevier, vol. 285(C).
    16. Abi Nurazaq, Warit & Wang, Wei-Cheng & Lin, Jhe-Kai, 2024. "The properties of sustainable aviation fuel II: Laminar flame speed," Energy, Elsevier, vol. 294(C).
    17. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    18. Yuanpu Zhang & Qian Wang & Liming Dai & Ming Zhang & Chunkan Yu, 2023. "Numerical Study on the Combustion Properties of Ammonia/DME and Ammonia/DMM Mixtures," Energies, MDPI, vol. 16(19), pages 1-18, October.
    19. Oppong, Francis & Zhongyang, Luo & Li, Xiaolu & Song, Yang & Xu, Cangsu & Diaby, Abdullatif Lacina, 2022. "Methyl pentanoate laminar burning characteristics: Experimental and numerical analysis," Renewable Energy, Elsevier, vol. 197(C), pages 228-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:447-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.