IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025008.html
   My bibliography  Save this article

On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames

Author

Listed:
  • Zhao, Haoran
  • Wang, Jinhua
  • Cai, Xiao
  • Dai, Hongchao
  • Liu, Xiao
  • Li, Gang
  • Huang, Zuohua

Abstract

The accelerative propagation of laminar and turbulent premixed hydrogen/air flames are investigated using a constant volume combustion chamber. The relative flame accelerative characteristics are analyzed under different φ, P, and u’. The results show that three distinct stages, namely quasi steady, transition acceleration and saturation acceleration stages are distinguished in laminar flame propagation process, and the onsets of saturation acceleration and transition acceleration nearly satisfy the relationship of Pecr2/Pecr1≈2. The temporal acceleration exponents (αR) of laminar flames increase quickly in transition acceleration stage and nearly remain as a constant (1.1–1.25) in saturation acceleration stage. The acceleration exponents (α) of laminar flames are weakly dependent on flame conditions once the cellular structures are settled. The turbulent flame propagation follows a continuous acceleration law as SF/SL,b∼Pedt and no evident transition point is observed. The temporal acceleration exponents of turbulent flames continuously increase as flame propagates outwardly and are susceptible to turbulence intensity. The acceleration parameters (dt) of turbulent flames continuously increase with u’/SL in different flame regimes and the growth trend becomes slow in corrugated flamelets regime. Besides, the dt of turbulent flames are promoted in the fuel-lean conditions. All of these indicate that the accelerative propagations of turbulent H2/air flames are dominated by turbulent stretch and the diffusive-thermal instability still plays a promotion role.

Suggested Citation

  • Zhao, Haoran & Wang, Jinhua & Cai, Xiao & Dai, Hongchao & Liu, Xiao & Li, Gang & Huang, Zuohua, 2023. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025008
    DOI: 10.1016/j.energy.2023.129106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Sheng & Zhang, Yu & Huang, Ronghua & Xu, Shijie & Ma, Yinjie & Wang, Zhaowen & Zhang, Xinhua, 2019. "Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames," Energy, Elsevier, vol. 171(C), pages 161-169.
    2. Rakopoulos, C.D. & Scott, M.A. & Kyritsis, D.C. & Giakoumis, E.G., 2008. "Availability analysis of hydrogen/natural gas blends combustion in internal combustion engines," Energy, Elsevier, vol. 33(2), pages 248-255.
    3. Li, Hong-Meng & Li, Guo-Xiu & Jiang, Yan-Huan & Li, Lei & Li, Fu-Sheng, 2018. "Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions," Energy, Elsevier, vol. 157(C), pages 76-86.
    4. Zhang, Guo-Peng & Li, Guo-Xiu & Li, Hong-Meng & Lv, Jia-Cheng, 2022. "Effect of diluent gas on propagation and explosion characteristics of hydrogen-rich syngas laminar premixed flame," Energy, Elsevier, vol. 246(C).
    5. Maghbouli, Amin & Yang, Wenming & An, Hui & Shafee, Sina & Li, Jing & Mohammadi, Samira, 2014. "Modeling knocking combustion in hydrogen assisted compression ignition diesel engines," Energy, Elsevier, vol. 76(C), pages 768-779.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
    2. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    3. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    4. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    5. Qi, Beibei & Li, Haitao & Zhai, Fuer & Yu, Minggao & Wei, Chengcai, 2024. "Experimental and numerical study on the explosion characteristics of syngas under different venting conditions," Energy, Elsevier, vol. 290(C).
    6. Xiaobei Cheng & Xinhua Zhang & Zhaowen Wang & Huimin Wu & Zhaowu Wang & Jyh-Yuan Chen, 2021. "Effect of Microwave Pulses on the Morphology and Development of Spark-Ignited Flame Kernel," Energies, MDPI, vol. 14(19), pages 1-19, September.
    7. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    8. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    9. Huang, Sheng & Zhang, Yu & Huang, Ronghua & Xu, Shijie & Ma, Yinjie & Wang, Zhaowen & Zhang, Xinhua, 2019. "Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames," Energy, Elsevier, vol. 171(C), pages 161-169.
    10. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    11. Rakopoulos, C.D. & Michos, C.N. & Giakoumis, E.G., 2008. "Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model," Energy, Elsevier, vol. 33(9), pages 1378-1398.
    12. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    13. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    14. Deng, Xiaorong & Li, Jing & Liang, Yifei & Yang, Wenming, 2023. "Dual-fuel engines fueled with n-butanol/n-octanol and n-butanol/DNBE: A comparative study of combustion and emissions characteristics," Energy, Elsevier, vol. 263(PC).
    15. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2013. "Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery," Energy, Elsevier, vol. 58(C), pages 448-457.
    16. Channapattana, Shylesha V. & Campli, Srinidhi & Madhusudhan, A. & Notla, Srihari & Arkerimath, Rachayya & Tripathi, Mukesh Kumar, 2023. "Energy analysis of DI-CI engine with nickel oxide nanoparticle added azadirachta indica biofuel at different static injection timing based on exergy," Energy, Elsevier, vol. 267(C).
    17. Zhao, Deyang & An, Yanzhao & Pei, Yiqiang & Shi, Hao & Wang, Kun, 2023. "Numerical study on the asymmetrical jets formation from active pre-chamber under super-lean combustion conditions," Energy, Elsevier, vol. 262(PA).
    18. Park, Cheolwoong & Kim, Changgi & Choi, Young & Lee, Janghee, 2013. "Operating strategy for exhaust gas reduction and performance improvement in a heavy-duty hydrogen-natural gas blend engine," Energy, Elsevier, vol. 50(C), pages 262-269.
    19. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    20. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Dimaratos, Athanasios M., 2012. "Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends," Energy, Elsevier, vol. 43(1), pages 214-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.