IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6932-d1252795.html
   My bibliography  Save this article

Pyrolysis and Combustion Behavior of Flax Straw as Biomass: Evaluation of Kinetic, Thermodynamic Parameters, and Qualitative Analysis of Degradation Products

Author

Listed:
  • Bahareh Vafakish

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

  • Amin Babaei-Ghazvini

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

  • Mahmood Ebadian

    (Prairie Clean Energy, 2221 Cornwall Street, Regina, SK S4P 0X9, Canada)

  • Bishnu Acharya

    (Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada)

Abstract

This study describes an investigation of the pyrolysis and combustion of flax straw as biofuel, focusing on the physicochemical properties and kinetic and thermodynamic parameters, and evaluates the type of degradation products using the thermogravimetry analysis–Fourier transform infrared spectroscopy (TGA-FTIR) technique. Pyrolysis and combustion processes were studied via thermogravimetric analysis at different heating rates of 5-10-15 and 20 °C min, one using three isoconversional methods and one using a model-fitting method. The activation energies, frequency factors, and thermodynamic parameters of flax straw biomass were investigated using different models. The obtained activation energy values for pyrolysis varied between 101.0 and 109.6 kJ mol −1 and for combustion were between 203.3 and 239.2 kJ mol −1 . The frequency factors were determined to be 1.7 × 109 for pyrolysis and 1.5 × 1017 s −1 for combustion. The change in Gibbs free energy (Δ G ) for the pyrolysis of flax straw was calculated to be 162.6 kJ mol −1 , whereas for combustion it increased to 203.9 kJ mol −1 . A notable contrast between the volatiles produced by pyrolysis and combustion is evident from the real-time analysis of the degradation products. Specifically, carboxylic acids, aromatics, alkanes, and alcohols are the principal degradation products during pyrolysis, while carbon dioxide is the primary component produced during combustion. These encouraging research outcomes regarding flax straw pyrolysis and combustion can broaden its application in bioenergy and biofuel, thus contributing significantly to it for resource recovery.

Suggested Citation

  • Bahareh Vafakish & Amin Babaei-Ghazvini & Mahmood Ebadian & Bishnu Acharya, 2023. "Pyrolysis and Combustion Behavior of Flax Straw as Biomass: Evaluation of Kinetic, Thermodynamic Parameters, and Qualitative Analysis of Degradation Products," Energies, MDPI, vol. 16(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6932-:d:1252795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2021. "Prediction of lignocellulosic biomass structural components from ultimate/proximate analysis," Energy, Elsevier, vol. 222(C).
    2. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Marangoni, Cintia & Machado, Ricardo Antonio Francisco & Bolzan, Ariovaldo, 2022. "Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles," Renewable Energy, Elsevier, vol. 191(C), pages 238-250.
    3. Izabela Gołąb-Bogacz & Waldemar Helios & Andrzej Kotecki & Marcin Kozak & Anna Jama-Rodzeńska, 2021. "Content and Uptake of Ash and Selected Nutrients (K, Ca, S) with Biomass of Miscanthus × giganteus Depending on Nitrogen Fertilization," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    4. Yalin Wang & Beibei Yan & Yu Wang & Jiahao Zhang & Xiaozhong Chen & Rob J. M. Bastiaans, 2021. "A Comparison of Combustion Properties in Biomass–Coal Blends Using Characteristic and Kinetic Analyses," IJERPH, MDPI, vol. 18(24), pages 1-17, December.
    5. Stančin, H. & Mikulčić, H. & Manić, N. & Stojiljiković, D. & Vujanović, M. & Wang, X. & Duić, N., 2021. "Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    2. Małgorzata Sieradzka & Cezary Kirczuk & Izabela Kalemba-Rec & Agata Mlonka-Mędrala & Aneta Magdziarz, 2022. "Pyrolysis of Biomass Wastes into Carbon Materials," Energies, MDPI, vol. 15(5), pages 1-12, March.
    3. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    4. Chenmei Tang & Jian Pan & Deqing Zhu & Zhengqi Guo & Congcong Yang & Siwei Li, 2024. "Optimizing Combustion Efficiency in Blast Furnace Injection: A Sustainable Approach Using Biomass Char and Coal Mixtures," Sustainability, MDPI, vol. 16(14), pages 1-14, July.
    5. Chen, Xinyang & Cai, Di & Yang, Yumiao & Sun, Yuhang & Wang, Binhui & Yao, Zhitong & Jin, Meiqing & Liu, Jie & Reinmöller, Markus & Badshah, Syed Lal & Magdziarz, Aneta, 2023. "Pyrolysis kinetics of bio-based polyurethane: Evaluating the kinetic parameters, thermodynamic parameters, and complementary product gas analysis using TG/FTIR and TG/GC-MS," Renewable Energy, Elsevier, vol. 205(C), pages 490-498.
    6. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    8. El Farissi, Hammadi & Talhaoui, Abdelmonaem & EL Bachiri, Ali, 2023. "Cistus shells used as a sustainable matrix for bioenergy production through slow pyrolysis process: Kinetic and thermodynamic study," Renewable Energy, Elsevier, vol. 218(C).
    9. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    10. Mariusz Jerzy Stolarski, 2021. "Industrial and Bioenergy Crops for Bioeconomy Development," Agriculture, MDPI, vol. 11(9), pages 1-5, September.
    11. Liborio, Denisson O. & Arias, Santiago & Mumbach, Guilherme D. & Alves, José Luiz F. & da Silva, Jean C.G. & Silva, Jose Marcos F. & Frety, Roger & Pacheco, Jose Geraldo A., 2024. "Evaluating black wattle bark industrial residue as a new feedstock for bioenergy via pyrolysis and multicomponent kinetic modeling," Renewable Energy, Elsevier, vol. 228(C).
    12. Hongli Chen & Liqiang Zhang & Zhongliang Huang & Zijian Wu & Mengjiao Tan & Xuan Zhang & Longbo Jiang & Xiaoli Qin & Jing Huang & Hui Li, 2022. "Effect of Anoxic Atmosphere on the Physicochemical and Pelletization Properties of Pinus massoniana Sawdust during Storage," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    13. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6932-:d:1252795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.