IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009960.html
   My bibliography  Save this article

Thermal decomposition of Syagrus romanzoffiana palm fibers: Thermodynamic and kinetic studies using the coats-redfern method

Author

Listed:
  • Ferfari, Oussama
  • Belaadi, Ahmed
  • Bourchak, Mostefa
  • Ghernaout, Djamel
  • Ajaj, Rafic M.
  • Chai, Boon Xian

Abstract

This work uses thermogravimetric analysis to perform the thermokinetics and thermodynamic studies of Syagrus romanzoffiana fibers (SRFs). In a nitrogen environment, SRFs were heated non-isothermally between 25 and 800 °C at four heating rates of 5 °C/min, 10 °C/min, 15 °C/min, and 20 °C/min. According to thermogravimetric examination, the pyrolysis of SRFs occurred in three steps. The second stage has had its kinetic and thermodynamic characteristics determined. The low-temperature stable components were decomposed at temperatures ranging from 218 to 376 °C, 218–391 °C, 218–394 °C, and 218–398 °C at heating rates of 5 °C/min, 10 °C/min, 15 °C/min, and 20 °C/min, respectively. The Coats-Redfern method was applied to twenty-one distinct kinetic models representing four key solid-phase reaction processes. The diffusion model using the Zhuravlev equation is the best-fitted model, having the most outstanding correlation coefficient values (R2 > 0.99) for all heating rates. Heating rates of 5, 10, 15, and 20 °C/min resulted in activation energy values of 114.02, 118.77, 119.44, and 113.89 kJ/mol, respectively. Thermodynamic characteristics (ΔH, ΔG, and ΔS) were computed using kinetic parameters. The data presented here helps evaluate SRFs as a possible biomass renewable energy source for building reactors and generating chemicals.

Suggested Citation

  • Ferfari, Oussama & Belaadi, Ahmed & Bourchak, Mostefa & Ghernaout, Djamel & Ajaj, Rafic M. & Chai, Boon Xian, 2024. "Thermal decomposition of Syagrus romanzoffiana palm fibers: Thermodynamic and kinetic studies using the coats-redfern method," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009960
    DOI: 10.1016/j.renene.2024.120928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.