IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1419-1427.html
   My bibliography  Save this article

In-situ growth of Ru/RuO2 nanoparticles decorated (La0.6Sr1.4)0.95Mn0.9Ru0.1O4 as a potential electrode for symmetrical solid oxide fuel cells

Author

Listed:
  • Wang, Junkai
  • Yang, Jiaming
  • Fu, Lei
  • Zong, Zheng
  • Zhou, Jun
  • Wu, Kai

Abstract

The A-site deficient (La0.6Sr1.4)0.95Mn0.9Ru0.1O4 (LSMRuO4) K2NiF4-type oxide is developed as a potential electrode for symmetrical solid oxide fuel cells (SSOFCs) with Ru/RuO2 nanoparticles decorating, which exhibits enhanced electrochemical activity for both hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR). The Ru nanoparticles are introduced via in-situ exsolution and distribute uniformly on the surface of LSMRuO4 as fuel electrode. And the metallic Ru nanoparticles were converted into RuO2 nanoparticles after exposing furtherly to the conditions encountered at oxygen electrode. Decorated by Ru nanoparticles, the highest electrical conductivity of 10.07 S cm−1 and lowest polarization resistance of 0.28 Ω cm2 are obtained for LSMRuO4 in 5% H2/N2 at 750 °C. Additionally, modified by RuO2 nanoparticles, LSMRuO4 also exhibits the highest electrical conductivity of 55.23 S cm−1 and lowest polarization resistance of 0.12 Ω cm2 at 750 °C in air. With Ru nanoparticles at fuel electrode and RuO2 nanoparticles at oxygen electrode simultaneously, the LSMRuO4-SSZ|SSZ|LSMRuO4-SSZ (Sc2O3 stabilized ZrO2) single cell demonstrates the highest power output of 711 mW cm−2 at 750 °C using pure H2 as fuel. All these results indicate that Ru/RuO2 nanoparticles decorated LSMRuO4 can be a favorable electrode for SSOFCs.

Suggested Citation

  • Wang, Junkai & Yang, Jiaming & Fu, Lei & Zong, Zheng & Zhou, Jun & Wu, Kai, 2022. "In-situ growth of Ru/RuO2 nanoparticles decorated (La0.6Sr1.4)0.95Mn0.9Ru0.1O4 as a potential electrode for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 189(C), pages 1419-1427.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1419-1427
    DOI: 10.1016/j.renene.2022.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junkai & Zhou, Jun & Yang, Jiaming & Zong, Zheng & Fu, Lei & Lian, Zhongjie & Zhang, Xinchang & Wang, Xuan & Chen, Chengxiang & Ma, Wanli & Wu, Kai, 2020. "Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (BCo, Ni, Cu) Ruddlesden–Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 157(C), pages 840-850.
    2. Dragos Neagu & Tae-Sik Oh & David N. Miller & Hervé Ménard & Syed M. Bukhari & Stephen R. Gamble & Raymond J. Gorte & John M. Vohs & John T.S. Irvine, 2015. "Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Dragos Neagu & Evangelos I. Papaioannou & Wan K. W. Ramli & David N. Miller & Billy J. Murdoch & Hervé Ménard & Ahmed Umar & Anders J. Barlow & Peter J. Cumpson & John T. S. Irvine & Ian S. Metcalfe, 2017. "Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Hyunmin Kim & Chaesung Lim & Ohhun Kwon & Jinkyung Oh & Matthew T. Curnan & Hu Young Jeong & Sihyuk Choi & Jeong Woo Han & Guntae Kim, 2021. "Unveiling the key factor for the phase reconstruction and exsolved metallic particle distribution in perovskites," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Hyeon Han & Yaolong Xing & Bumsu Park & Dmitry I. Bazhanov & Yeongrok Jin & John T. S. Irvine & Jaekwang Lee & Sang Ho Oh, 2022. "Anti-phase boundary accelerated exsolution of nanoparticles in non-stoichiometric perovskite thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Wang, Junkai & Zhou, Jun & Yang, Jiaming & Zong, Zheng & Fu, Lei & Lian, Zhongjie & Zhang, Xinchang & Wang, Xuan & Chen, Chengxiang & Ma, Wanli & Wu, Kai, 2020. "Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (BCo, Ni, Cu) Ruddlesden–Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 157(C), pages 840-850.
    5. Georgiadis, Amvrosios G. & Tsiotsias, Anastasios I. & Siakavelas, George I. & Charisiou, Nikolaos D. & Ehrhardt, Benedikt & Wang, Wen & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & Mascott, 2024. "An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)," Renewable Energy, Elsevier, vol. 227(C).
    6. Guo, Qunwei & Geng, Jiaqi & Pan, Jiawen & Chi, Bo & Xiong, Chunyan & Pu, Jian, 2023. "A-site deficient La1-xCr0.95Ru0.05O3-δ perovskites for N-hexadecane steam reforming: Effect of steam activation and active oxygen," Renewable Energy, Elsevier, vol. 219(P2).
    7. Chan, Wei Ping & Veksha, Andrei & Lei, Junxi & Oh, Wen-Da & Dou, Xiaomin & Giannis, Apostolos & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "A hot syngas purification system integrated with downdraft gasification of municipal solid waste," Applied Energy, Elsevier, vol. 237(C), pages 227-240.
    8. Sanaz Koohfar & Masoud Ghasemi & Tyler Hafen & Georgios Dimitrakopoulos & Dongha Kim & Jenna Pike & Singaravelu Elangovan & Enrique D. Gomez & Bilge Yildiz, 2023. "Improvement of oxygen reduction activity and stability on a perovskite oxide surface by electrochemical potential," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Vecino-Mantilla, Sebastian & Zignani, Sabrina C. & Vannier, Rose-Noëlle & Aricò, Antonino S. & Lo Faro, Massimiliano, 2022. "Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas," Renewable Energy, Elsevier, vol. 192(C), pages 784-792.
    10. Eleonora Calì & Melonie P. Thomas & Rama Vasudevan & Ji Wu & Oriol Gavalda-Diaz & Katharina Marquardt & Eduardo Saiz & Dragos Neagu & Raymond R. Unocic & Stephen C. Parker & Beth S. Guiton & David J. , 2023. "Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Nechache, Aziz & Hody, Stéphane, 2021. "Alternative and innovative solid oxide electrolysis cell materials: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Min Xu & Yukwon Jeon & Aaron Naden & Heesu Kim & Gwilherm Kerherve & David J. Payne & Yong-gun Shul & John T. S. Irvine, 2024. "Synergistic growth of nickel and platinum nanoparticles via exsolution and surface reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Kwon, Byeong Wan & Oh, Joo Hyeng & Kim, Ghun Sik & Yoon, Sung Pil & Han, Jonghee & Nam, Suk Woo & Ham, Hyung Chul, 2018. "The novel perovskite-type Ni-doped Sr0.92Y0.08TiO3 as a reforming biogas (CH4+CO2) for H2 production," Applied Energy, Elsevier, vol. 227(C), pages 213-219.
    14. Shuo Liu & Chaochao Dun & Qike Jiang & Zhengxi Xuan & Feipeng Yang & Jinghua Guo & Jeffrey J. Urban & Mark T. Swihart, 2024. "Challenging thermodynamics: combining immiscible elements in a single-phase nano-ceramic," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Xavier Majnoni d’Intignano & Davide Cademartori & Davide Clematis & Sabrina Presto & Massimo Viviani & Rodolfo Botter & Antonio Barbucci & Giacomo Cerisola & Gilles Caboche & M. Paola Carpanese, 2020. "Infiltrated Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ -Based Electrodes as Anodes in Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 13(14), pages 1-10, July.
    16. Jo, Seungyeon & Han Kim, Yo & Jeong, Hyeongwon & Park, Chan-ho & Won, Bo-Ram & Jeon, Hyejin & Taek Lee, Kang & Myung, Jae-ha, 2022. "Exsolution of phase-separated nanoparticles via trigger effect toward reversible solid oxide cell," Applied Energy, Elsevier, vol. 323(C).
    17. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1419-1427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.