IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp840-850.html
   My bibliography  Save this article

Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (BCo, Ni, Cu) Ruddlesden–Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells

Author

Listed:
  • Wang, Junkai
  • Zhou, Jun
  • Yang, Jiaming
  • Zong, Zheng
  • Fu, Lei
  • Lian, Zhongjie
  • Zhang, Xinchang
  • Wang, Xuan
  • Chen, Chengxiang
  • Ma, Wanli
  • Wu, Kai

Abstract

A-site deficient (La0.6Sr1.4)0.95Mn1-xBxO4 (x = 0, 0.1, B= Co, Ni, Cu) (LSMBO4) Ruddlesden–Popper oxides were demonstrated as promising symmetrical electrodes for Sc2O3 stabilized ZrO2 (SSZ) electrolyte supported solid oxide fuel cells (SOFCs). The formation of oxygen vacancies is facilitated with the B-site transition metal doping. A-site defect promotes the exsolution of catalytic Co, Ni or Cu nanoparticles on the surface of materials in reducing atmosphere. The electrochemical performances in air and reducing atmosphere are significantly optimized via the substitution of Mn by Co, Ni or Cu and exsolved metallic nanoparticle catalysts. Especially, the materials doped by B-site with Cu shows the highest electrical conductivity of 37.54 S cm−1 and 6.82 S cm−1 and lowest polarization resistance of 0.12 Ω cm2 and 0.32 Ω cm2 at 750 °C in air and 5% H2/N2, respectively. The maximum power density of 623.1 mW cm−2 at 750 °C is achieved for an electrolyte-supported symmetrical single cell with the LSMBO4-SSZ composite electrode operating with pure H2. All these results indicate that LSMBO4 can be promising candidates for symmetric electrodes of SOFCs.

Suggested Citation

  • Wang, Junkai & Zhou, Jun & Yang, Jiaming & Zong, Zheng & Fu, Lei & Lian, Zhongjie & Zhang, Xinchang & Wang, Xuan & Chen, Chengxiang & Ma, Wanli & Wu, Kai, 2020. "Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (BCo, Ni, Cu) Ruddlesden–Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 157(C), pages 840-850.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:840-850
    DOI: 10.1016/j.renene.2020.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Xiuqi & Chen, Huili & Tian, Wenjuan & Shi, Jing & Zhou, Wei & Cheng, Fangqin & Li, Si-Dian & Shao, Zongping, 2020. "Utilization of low-concentration coal-bed gas to generate power using a core-shell catalyst-modified solid oxide fuel cell," Renewable Energy, Elsevier, vol. 147(P1), pages 602-609.
    2. Dimitrova, Zlatina & Maréchal, François, 2017. "Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender," Renewable Energy, Elsevier, vol. 112(C), pages 124-142.
    3. Dragos Neagu & Tae-Sik Oh & David N. Miller & Hervé Ménard & Syed M. Bukhari & Stephen R. Gamble & Raymond J. Gorte & John M. Vohs & John T.S. Irvine, 2015. "Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    4. Yinlong Zhu & Hassan A. Tahini & Zhiwei Hu & Jie Dai & Yubo Chen & Hainan Sun & Wei Zhou & Meilin Liu & Sean C. Smith & Huanting Wang & Zongping Shao, 2019. "Unusual synergistic effect in layered Ruddlesden−Popper oxide enables ultrafast hydrogen evolution," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Junkai & Yang, Jiaming & Fu, Lei & Zong, Zheng & Zhou, Jun & Wu, Kai, 2022. "In-situ growth of Ru/RuO2 nanoparticles decorated (La0.6Sr1.4)0.95Mn0.9Ru0.1O4 as a potential electrode for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 189(C), pages 1419-1427.
    2. Xavier Majnoni d’Intignano & Davide Cademartori & Davide Clematis & Sabrina Presto & Massimo Viviani & Rodolfo Botter & Antonio Barbucci & Giacomo Cerisola & Gilles Caboche & M. Paola Carpanese, 2020. "Infiltrated Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ -Based Electrodes as Anodes in Solid Oxide Electrolysis Cells," Energies, MDPI, vol. 13(14), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo-Wen Zhang & Meng-Nan Zhu & Min-Rui Gao & Xiuan Xi & Nanqi Duan & Zhou Chen & Ren-Fei Feng & Hongbo Zeng & Jing-Li Luo, 2022. "Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Georgiadis, Amvrosios G. & Tsiotsias, Anastasios I. & Siakavelas, George I. & Charisiou, Nikolaos D. & Ehrhardt, Benedikt & Wang, Wen & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & Mascott, 2024. "An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)," Renewable Energy, Elsevier, vol. 227(C).
    3. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    4. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Wang, Junkai & Yang, Jiaming & Fu, Lei & Zong, Zheng & Zhou, Jun & Wu, Kai, 2022. "In-situ growth of Ru/RuO2 nanoparticles decorated (La0.6Sr1.4)0.95Mn0.9Ru0.1O4 as a potential electrode for symmetrical solid oxide fuel cells," Renewable Energy, Elsevier, vol. 189(C), pages 1419-1427.
    7. Sanaz Koohfar & Masoud Ghasemi & Tyler Hafen & Georgios Dimitrakopoulos & Dongha Kim & Jenna Pike & Singaravelu Elangovan & Enrique D. Gomez & Bilge Yildiz, 2023. "Improvement of oxygen reduction activity and stability on a perovskite oxide surface by electrochemical potential," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Qiancheng Wang & Hsi-Hsien Wei & Qian Xu, 2018. "A Solid Oxide Fuel Cell (SOFC)-Based Biogas-from-Waste Generation System for Residential Buildings in China: A Feasibility Study," Sustainability, MDPI, vol. 10(7), pages 1-9, July.
    9. Vecino-Mantilla, Sebastian & Zignani, Sabrina C. & Vannier, Rose-Noëlle & Aricò, Antonino S. & Lo Faro, Massimiliano, 2022. "Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas," Renewable Energy, Elsevier, vol. 192(C), pages 784-792.
    10. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Eleonora Calì & Melonie P. Thomas & Rama Vasudevan & Ji Wu & Oriol Gavalda-Diaz & Katharina Marquardt & Eduardo Saiz & Dragos Neagu & Raymond R. Unocic & Stephen C. Parker & Beth S. Guiton & David J. , 2023. "Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).
    13. Nechache, Aziz & Hody, Stéphane, 2021. "Alternative and innovative solid oxide electrolysis cell materials: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Yudi Zhang & Kathryn E. Arpino & Qun Yang & Naoki Kikugawa & Dmitry A. Sokolov & Clifford W. Hicks & Jian Liu & Claudia Felser & Guowei Li, 2022. "Observation of a robust and active catalyst for hydrogen evolution under high current densities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Javier Zamudio-García & Francesco Chiabrera & Armando Morin-Martínez & Ivano E. Castelli & Enrique R. Losilla & David Marrero-López & Vincenzo Esposito, 2024. "Hierarchical exsolution in vertically aligned heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
    18. Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Meng, Xin & Deng, Bohao & Wu, Weifeng & Zhao, Pan, 2023. "Thermodynamic analysis of a novel combined heating and power system based on low temperature solid oxide fuel cell (LT-SOFC) and high temperature proton exchange membrane fuel cell (HT-PEMFC)," Energy, Elsevier, vol. 284(C).
    20. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:840-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.