Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.02.050
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
- Kaygusuz, Kamil & Kaygusuz, Abdullah, 2002. "Renewable energy and sustainable development in Turkey," Renewable Energy, Elsevier, vol. 25(3), pages 431-453.
- Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
- Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
- Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
- Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 113(C), pages 461-478.
- Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
- Faizal, Mohammed & Rafiuddin Ahmed, M. & Lee, Young-Ho, 2010. "On utilizing the orbital motion in water waves to drive a Savonius rotor," Renewable Energy, Elsevier, vol. 35(1), pages 164-169.
- Yang, Bo & Lawn, Chris, 2011. "Fluid dynamic performance of a vertical axis turbine for tidal currents," Renewable Energy, Elsevier, vol. 36(12), pages 3355-3366.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
- Bhagat, Ravindra & Kumar, Dinesh & Sarkar, Shibayan, 2023. "Design modification and performance prediction of ellipsoid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 219(P1).
- Zhang, Weihao & Li, Lele & Li, Ya & Jiang, Chiju & Wang, Yufan, 2023. "A parameterized-loading driven inverse design and multi-objective coupling optimization method for turbine blade based on deep learning," Energy, Elsevier, vol. 281(C).
- Kang, Can & Wang, Zhiyuan & Kim, Hyoung-Bum & Shao, Chunbing, 2023. "Effects of solidity on startup performance and flow characteristics of a vertical-axis hydrokinetic rotor with three helical blades," Renewable Energy, Elsevier, vol. 218(C).
- Chaudhari, Vimal N. & Shah, Samip P., 2024. "Performance enhancement of savonius hydrokinetic turbine using split airfoil blade: A numerical investigation," Renewable Energy, Elsevier, vol. 224(C).
- Abdelkader Mahammedi & Naas Toufik Tayeb & Kouider Rahmani & Awf Al-Kassir & Eduardo Manuel Cuerda-Correa, 2023. "Exploring the Bioenergy Potential of Microfluidics: The Case of a T-Micromixer with Helical Elements for Sustainable Energy Solutions," Energies, MDPI, vol. 16(20), pages 1-18, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
- Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
- Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.
- Hashem, Islam & Zhu, Baoshan, 2021. "Metamodeling-based parametric optimization of a bio-inspired Savonius-type hydrokinetic turbine," Renewable Energy, Elsevier, vol. 180(C), pages 560-576.
- Kuo-Tsai Wu & Kuo-Hao Lo & Ruey-Chy Kao & Sheng-Jye Hwang, 2022. "Numerical and Experimental Investigation of the Effect of Design Parameters on Savonius-Type Hydrokinetic Turbine Performance," Energies, MDPI, vol. 15(5), pages 1-19, March.
- Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Derya Karakaya & Aslı Bor & Sebnem Elçi, 2024. "Numerical Analysis of Three Vertical Axis Turbine Designs for Improved Water Energy Efficiency," Energies, MDPI, vol. 17(6), pages 1-24, March.
- Khani, Mohammad Sadegh & Shahsavani, Younes & Mehraein, Mojtaba & Soleimani Rad, Mohammad Hossein & Nikbakhsh, Amir Abbas, 2024. "Evaluation of the performance of the Savonius hydrokinetic turbines in the straight and curved channels using advanced machine learning methods," Energy, Elsevier, vol. 290(C).
- Sarma, Kanak Chandra & Biswas, Agnimitra & Misra, Rahul Dev, 2022. "Experimental investigation of a two-bladed double stage Savonius-akin hydrokinetic turbine at low flow velocity conditions," Renewable Energy, Elsevier, vol. 187(C), pages 958-973.
- C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
- Mosbahi, Mabrouk & Ayadi, Ahmed & Chouaibi, Youssef & Driss, Zied & Tucciarelli, Tullio, 2020. "Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine," Renewable Energy, Elsevier, vol. 162(C), pages 1087-1103.
- K. Y. Lau & C. W. Tan, 2021. "Performance analysis of photovoltaic, hydrokinetic, and hybrid diesel systems for rural electrification in Malaysian Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6279-6300, April.
- Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
- C M, Shashikumar & Honnasiddaiah, Ramesh & Hindasageri, Vijaykumar & Madav, Vasudeva, 2021. "Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes," Renewable Energy, Elsevier, vol. 163(C), pages 845-857.
- Talukdar, Parag K. & Kulkarni, Vinayak & Saha, Ujjwal K., 2018. "Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation," Renewable Energy, Elsevier, vol. 127(C), pages 158-167.
- Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
- Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel," Renewable Energy, Elsevier, vol. 131(C), pages 1300-1317.
- John, Bony & Varghese, James, 2021. "Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems," Energy, Elsevier, vol. 221(C).
- Bakhshandeh Rostami, Ali & Fernandes, Antonio Carlos, 2015. "The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting," Applied Energy, Elsevier, vol. 143(C), pages 312-323.
More about this item
Keywords
Hydrokinetic turbine (HKT); CFD; Savonius HKT; Airfoil section rotor; Turbine augmentation; Turbine performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:801-818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.