IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp592-606.html
   My bibliography  Save this article

Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization

Author

Listed:
  • Mohammadi, M.
  • Mohammadi, R.
  • Ramadan, A.
  • Mohamed, M.H.

Abstract

Numerical ascertainment of improving performance of modified Savonius rotor as decreasing the minimum wind speed required for initiating the rotation is investigated using 3D flow predictions executed in ANSYS-FLUENT. For making the comparison feasible, the design represented in a similar paper is simulated and performance is compared with empirical data. Different types of nozzles are added after observing acceptable agreement between empirical and simulation results. Nozzle acts like an air intake on the advancing blade and fortifies the acting flow; it also eliminates the reverse moment caused by contacting the flow with returning blade. Therefore, increasing in power coefficient is anticipated. Systematic analysis of obtained torque and power coefficients with and without nozzle are presented. In the next step, this work is dedicated to bucket shape optimization. Buckets with multi-curvature are introduced and have been investigated in three stages. By installing a simple nozzle with tail in front of a Savonius wind turbine with double-curved two stage buckets, the Savonius turbine maximum power coefficient is improved from 0.13 to 0.39.

Suggested Citation

  • Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:592-606
    DOI: 10.1016/j.energy.2018.06.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831137X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afungchui, David & Kamoun, Baddreddinne & Helali, Ali & Ben Djemaa, Abdellatif, 2010. "The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method," Renewable Energy, Elsevier, vol. 35(1), pages 307-313.
    2. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    3. Zhou, Tong & Rempfer, Dietmar, 2013. "Numerical study of detailed flow field and performance of Savonius wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 373-381.
    4. Mohamed, M.H. & Janiga, G. & Pap, E. & Thévenin, D., 2010. "Optimization of Savonius turbines using an obstacle shielding the returning blade," Renewable Energy, Elsevier, vol. 35(11), pages 2618-2626.
    5. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    6. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    7. Morbiato, T. & Borri, C. & Vitaliani, R., 2014. "Wind energy harvesting from transport systems: A resource estimation assessment," Applied Energy, Elsevier, vol. 133(C), pages 152-168.
    8. Akwa, João Vicente & Vielmo, Horácio Antonio & Petry, Adriane Prisco, 2012. "A review on the performance of Savonius wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3054-3064.
    9. Altan, Burçin Deda & Atılgan, Mehmet, 2010. "The use of a curtain design to increase the performance level of a Savonius wind rotors," Renewable Energy, Elsevier, vol. 35(4), pages 821-829.
    10. Gupta, R. & Biswas, A. & Sharma, K.K., 2008. "Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor," Renewable Energy, Elsevier, vol. 33(9), pages 1974-1981.
    11. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    12. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Performance tests on helical Savonius rotors," Renewable Energy, Elsevier, vol. 34(3), pages 521-529.
    13. Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.
    14. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    15. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    16. Menet, J.-L., 2004. "A double-step Savonius rotor for local production of electricity: a design study," Renewable Energy, Elsevier, vol. 29(11), pages 1843-1862.
    17. Ramadan, A. & Yousef, K. & Said, M. & Mohamed, M.H., 2018. "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, Elsevier, vol. 151(C), pages 839-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Nematollahi, Omid & Alamdari, Pouria & Jahangiri, Mehdi & Sedaghat, Ahmad & Alemrajabi, Ali Akbar, 2019. "A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps," Energy, Elsevier, vol. 175(C), pages 914-930.
    3. Anesu Godfrey Chitura & Patrick Mukumba & Ndanduleni Lethole, 2024. "Enhancing the Performance of Savonius Wind Turbines: A Review of Advances Using Multiple Parameters," Energies, MDPI, vol. 17(15), pages 1-17, July.
    4. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    5. Khan, Zain Ullah & Ali, Zaib & Uddin, Emad, 2022. "Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile," Renewable Energy, Elsevier, vol. 188(C), pages 801-818.
    6. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    7. Kumail Abdulkareem Hadi Al-Gburi & Balasem Abdulameer Jabbar Al-quraishi & Firas Basim Ismail Alnaimi & Ee Sann Tan & Ali Hussein Shamman Al-Safi, 2022. "Experimental and Simulation Investigation of Performance of Scaled Model for a Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 15(23), pages 1-23, November.
    8. Zhang, Yongchao & Kang, Can & Ji, Yanguang & Li, Qing, 2019. "Experimental and numerical investigation of flow patterns and performance of a modified Savonius hydrokinetic rotor," Renewable Energy, Elsevier, vol. 141(C), pages 1067-1079.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    2. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    3. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    5. Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.
    6. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    7. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    8. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    9. Rengma, Thochi Seb & Subbarao, P.M.V., 2022. "Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network," Renewable Energy, Elsevier, vol. 200(C), pages 658-673.
    10. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.
    11. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    12. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    13. Ducoin, A. & Shadloo, M.S. & Roy, S., 2017. "Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades," Renewable Energy, Elsevier, vol. 105(C), pages 374-385.
    14. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    15. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    16. Tartuferi, Mariano & D'Alessandro, Valerio & Montelpare, Sergio & Ricci, Renato, 2015. "Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems," Energy, Elsevier, vol. 79(C), pages 371-384.
    17. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    18. Krzysztof Doerffer & Janusz Telega & Piotr Doerffer & Paulina Hercel & Andrzej Tomporowski, 2021. "Dependence of Power Characteristics on Savonius Rotor Segmentation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    19. Krzysztof Sobczak & Damian Obidowski & Piotr Reorowicz & Emil Marchewka, 2020. "Numerical Investigations of the Savonius Turbine with Deformable Blades," Energies, MDPI, vol. 13(14), pages 1-20, July.
    20. Xu, Wen & Li, Cheng-cheng & Huang, Sheng-xian & Wang, Ying, 2022. "Aerodynamic performance improvement analysis of Savonius Vertical Axis Wind Turbine utilizing plasma excitation flow control," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:592-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.