IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp760-773.html
   My bibliography  Save this article

Artificial neural network method modeling of microwave-assisted esterification of PFAD over mesoporous TiO2‒ZnO catalyst

Author

Listed:
  • Soltani, Soroush
  • Roodbar Shojaei, Taha
  • Khanian, Nasrin
  • Shean Yaw Choong, Thomas
  • Asim, Nilofar
  • Zhao, Yue

Abstract

An artificial neural network (ANN) was employed to predict biodiesel yield through microwave-assisted esterification of palm fatty acid distillate (PFAD) oil over TiO2‒ZnO mesostructured catalyst. The experimental data of biodiesel content (%) was carried out via changing three input factors (i.e. methanol:PFAD molar ratio, catalyst concentration, and reaction time). The results indicated that ANN is an appropriate approach for modeling and optimizing fatty acid methyl ester (FAME) yield performed over the microwave-assisted esterification process. The network was trained by five different algorithms (i.e. batch backpropagation (BBP), incremental backpropagation (IBP), Levenberg‒Marquardt (LM), genetic algorithm (GA), and quick propagation (QP)). The evaluation disclosed that the QP algorithm gave the least root mean squared error (RMSE), absolute average deviation (AAD), and the highest determination coefficient (R2) for both training and testing data groups. The confirmation test results of the ANN-based on QP-3-10-1 revealed that the RMSE, AAD, and the highest R2 were 0.741, 0.776, and 0.997, correspondingly. All in all, QP‒3‒10‒1 model offered the best possible mathematical qualities amongst all algorithms. Over this method, the FAME yield was determined at 97.45% (relating to the actual FAME yield of 97.33%) which was attained over 3 wt% mesoporous TiO2‒ZnO catalyst, methanol:PFAD molar ratio of 9:1 within 25 min of operating time. The esterification reaction conditions predicted by ANN showed to be potential for modeling and predicting FAME yield with an extremely well precision of 97.06%.

Suggested Citation

  • Soltani, Soroush & Roodbar Shojaei, Taha & Khanian, Nasrin & Shean Yaw Choong, Thomas & Asim, Nilofar & Zhao, Yue, 2022. "Artificial neural network method modeling of microwave-assisted esterification of PFAD over mesoporous TiO2‒ZnO catalyst," Renewable Energy, Elsevier, vol. 187(C), pages 760-773.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:760-773
    DOI: 10.1016/j.renene.2022.01.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soltani, Soroush & Khanian, Nasrin & Rashid, Umer & Choong, Thomas Shean Yaw, 2020. "Core-shell ZnO-TiO2 hollow spheres synthesized by in-situ hydrothermal method for ester production application," Renewable Energy, Elsevier, vol. 151(C), pages 1076-1081.
    2. Speranza, Lais Galileu & Ingram, Andrew & Leeke, Gary A., 2015. "Assessment of algae biodiesel viability based on the area requirement in the European Union, United States and Brazil," Renewable Energy, Elsevier, vol. 78(C), pages 406-417.
    3. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    4. Betiku, Eriola & Okunsolawo, Samuel S. & Ajala, Sheriff O. & Odedele, Olatunde S., 2015. "Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tr," Renewable Energy, Elsevier, vol. 76(C), pages 408-417.
    5. Choedkiatsakul, I. & Ngaosuwan, K. & Assabumrungrat, S. & Mantegna, S. & Cravotto, G., 2015. "Biodiesel production in a novel continuous flow microwave reactor," Renewable Energy, Elsevier, vol. 83(C), pages 25-29.
    6. Xue, Bao-jin & Luo, Jia & Zhang, Fan & Fang, Zhen, 2014. "Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst," Energy, Elsevier, vol. 68(C), pages 584-591.
    7. Wan, Zuraida & Lim, J.K. & Hameed, B.H., 2017. "Chromium–tungsten–manganese oxides for synthesis of fatty acid methyl ester via esterification of palm fatty acid distillate," Energy, Elsevier, vol. 141(C), pages 1989-1997.
    8. Soltani, Soroush & Rashid, Umer & Yunus, Robiah & Taufiq-Yap, Yun Hin & Al-Resayes, Saud Ibrahim, 2016. "Post-functionalization of polymeric mesoporous C@Zn core–shell spheres used for methyl ester production," Renewable Energy, Elsevier, vol. 99(C), pages 1235-1243.
    9. Moradi, G.R. & Dehghani, S. & Khosravian, F. & Arjmandzadeh, A., 2013. "The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield," Renewable Energy, Elsevier, vol. 50(C), pages 915-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silitonga, A.S. & Shamsuddin, A.H. & Mahlia, T.M.I. & Milano, Jassinne & Kusumo, F. & Siswantoro, Joko & Dharma, S. & Sebayang, A.H. & Masjuki, H.H. & Ong, Hwai Chyuan, 2020. "Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization," Renewable Energy, Elsevier, vol. 146(C), pages 1278-1291.
    2. Sina Faizollahzadeh Ardabili & Bahman Najafi & Meysam Alizamir & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters," Energies, MDPI, vol. 11(11), pages 1-19, October.
    3. Sakthivel, G. & Sivaraja, C.M. & Ikua, Bernard W., 2019. "Prediction OF CI engine performance, emission and combustion parameters using fish oil as a biodiesel by fuzzy-GA," Energy, Elsevier, vol. 166(C), pages 287-306.
    4. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    5. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    6. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    7. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    8. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    9. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    10. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    11. Vellaiyan, Suresh & Partheeban, C.M. Anand, 2020. "Combined effect of water emulsion and ZnO nanoparticle on emissions pattern of soybean biodiesel fuelled diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 1157-1166.
    12. Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
    13. Li, Hui & Wang, Junchi & Ma, Xiaoling & Wang, Yangyang & Li, Guoning & Guo, Min & Cui, Ping & Lu, Wanpeng & Zhou, Shoujun & Yu, Mingzhi, 2021. "Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production," Renewable Energy, Elsevier, vol. 179(C), pages 1191-1203.
    14. Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
    15. Soltani, Soroush & Khanian, Nasrin & Rashid, Umer & Choong, Thomas Shean Yaw, 2020. "Core-shell ZnO-TiO2 hollow spheres synthesized by in-situ hydrothermal method for ester production application," Renewable Energy, Elsevier, vol. 151(C), pages 1076-1081.
    16. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Inam Ullah Khan & Zhenhua Yan & Jun Chen, 2020. "Production and Characterization of Biodiesel Derived from a Novel Source Koelreuteria paniculata Seed Oil," Energies, MDPI, vol. 13(4), pages 1-15, February.
    19. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock," Energy, Elsevier, vol. 162(C), pages 408-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:760-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.