IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp403-416.html
   My bibliography  Save this article

An insight - A statistical investigation of consolidated bioprocessing of Allium ascalonicum leaves to ethanol using Hangateiclostridium thermocellum KSMK1203 and synthetic consortium

Author

Listed:
  • Kavitha, S.
  • Gajendran, T.
  • Saranya, K.
  • Selvakumar, P.
  • Manivasagan, V.
  • Jeevitha, S.

Abstract

Bioethanol can be produced by cellulolytic and ethanogenic bacterial species could efficiently degrade lignocelluloses and have potential for biofuels production through consolidated bioprocessing (CBP). In this study, on-site cellulase production followed by saccharification and fermentation of pre-treated Allium ascalonicum leaves to bioethanol in a single reactor using Hangateiclostridium thermocellum KSMK1203 and consortium of Cellulomonas fimi MTCC 24 and Zymomonas mobilis MTCC 92. A. ascalonicum leaf pre-treatment with different alkalis and different pre-treatment conditions such as alkali dosage and time for proficient removal of hemicellulose and cellulose recovery was optimized using RSM method with the maximum hemicellulose removal of 85.25%. The essential medium components were screened through PBD and further optimized using RSM method for H. thermocellum KSMK1203 and the consortium for maximized bioethanol yield. Hence, this study proposed that wild-type H. thermocellum KSMK1203 strain and consortium could be used for cellulase secretion and simultaneous bioethanol conversion.

Suggested Citation

  • Kavitha, S. & Gajendran, T. & Saranya, K. & Selvakumar, P. & Manivasagan, V. & Jeevitha, S., 2022. "An insight - A statistical investigation of consolidated bioprocessing of Allium ascalonicum leaves to ethanol using Hangateiclostridium thermocellum KSMK1203 and synthetic consortium," Renewable Energy, Elsevier, vol. 187(C), pages 403-416.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:403-416
    DOI: 10.1016/j.renene.2022.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200057X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jeng-Chen & Chang, Wan-Jhu & Hsu, Teng-Chieh & Chen, Hui-Jye & Chen, Yo-Chia, 2020. "Direct fermentation of cellulose to ethanol by Saccharomyces cerevisiae displaying a bifunctional cellobiohydrolase gene from Orpinomyces sp. Y102," Renewable Energy, Elsevier, vol. 159(C), pages 1029-1035.
    2. Park, Yong Cheol & Kim, Jun Seok, 2012. "Comparison of various alkaline pretreatment methods of lignocellulosic biomass," Energy, Elsevier, vol. 47(1), pages 31-35.
    3. Kavitha, S. & Gajendran, T. & Saranya, K. & Selvakumar, P. & Manivasagan, V., 2021. "Study on consolidated bioprocessing of pre-treated Nannochloropsis gaditana biomass into ethanol under optimal strategy," Renewable Energy, Elsevier, vol. 172(C), pages 440-452.
    4. Yuan, Xinchuan & Chen, Xiangxue & Shen, Guannan & Chen, Sitong & Yu, Jianming & Zhai, Rui & Xu, Zhaoxian & Jin, Mingjie, 2022. "Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high digestibility and high fermentability for cellulosic ethanol production," Renewable Energy, Elsevier, vol. 182(C), pages 377-389.
    5. Guilherme, Ederson Paulo Xavier & Zanphorlin, Leticia Maria & Sousa, Amanda Silva & Miyamoto, Renan Yuji & Bruziquesi, Carlos Giovani Oliveira & Mesquita, Bruna Mara Aparecida de Carvalho & Santos, Se, 2022. "Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Sacchar," Renewable Energy, Elsevier, vol. 182(C), pages 274-284.
    6. Hu, Jun & Cao, Wen & Guo, Liejin, 2021. "Directly convert lignocellulosic biomass to H2 without pretreatment and added cellulase by two-stage fermentation in semi-continuous modes," Renewable Energy, Elsevier, vol. 170(C), pages 866-874.
    7. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed S. Abdel-Salam & Safa S. Hafez & Mohamed Fadel & Shereen A. H. Mohamed & Wafaa K. Hegazy & Bigad E. Khalil, 2023. "Bio Ethanol Production from Rice Straw Saccharification via Avicelase Gene in E. coli Recombinant Strain," Clean Technol., MDPI, vol. 5(2), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    2. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    3. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    4. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    5. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    7. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    8. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    9. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    10. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    11. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    12. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    13. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    14. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    15. Kim, D. & Hadigheh, S.A., 2024. "Oxidative pyrolysis of biosolid: Air concentration effects on biochar formation and kinetics," Renewable Energy, Elsevier, vol. 224(C).
    16. Tahereh Soleymani Angili & Katarzyna Grzesik & Wojciech Jerzak, 2023. "Comparative Life Cycle Assessment of Catalytic Intermediate Pyrolysis of Rapeseed Meal," Energies, MDPI, vol. 16(4), pages 1-16, February.
    17. Polin, Joseph P. & Peterson, Chad A. & Whitmer, Lysle E. & Smith, Ryan G. & Brown, Robert C., 2019. "Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor," Applied Energy, Elsevier, vol. 249(C), pages 276-285.
    18. Yong Cheol Park & Tae Hyun Kim & Jun Seok Kim, 2018. "Flow-Through Pretreatment of Corn Stover by Recycling Organosolv to Reduce Waste Solvent," Energies, MDPI, vol. 11(4), pages 1-8, April.
    19. Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.
    20. Hyun Jin Jung & Hyun Kwak & Jinyoung Chun & Kyeong Keun Oh, 2021. "Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk," Sustainability, MDPI, vol. 13(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:403-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.