IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp1029-1035.html
   My bibliography  Save this article

Direct fermentation of cellulose to ethanol by Saccharomyces cerevisiae displaying a bifunctional cellobiohydrolase gene from Orpinomyces sp. Y102

Author

Listed:
  • Liu, Jeng-Chen
  • Chang, Wan-Jhu
  • Hsu, Teng-Chieh
  • Chen, Hui-Jye
  • Chen, Yo-Chia

Abstract

A cellobiohydrolase gene, cbhC16, isolated from the cDNA library of a rumen fungus. The recombinant CbhC16 demonstrated a specific activity of 7.0 U mg−1 protein against phosphoric acid-swollen avicel, and cellobiose was the main product in the reaction mixture. Glucose was further released from cellobiose by the action of CbhC16 and fermented to ethanol by Saccharomyces cerevisiae. This phenomenon, possessing activities of both cellobiohydrolase and β-glucosidase, is rarely observed in the hydrolysis by typical cellobiohydrolases. Yeast cells displaying CbhC16 were inoculated into YNB–CAA broth containing carboxymethyl cellulose, β-glucan, ammonia fibre explosion-treated rice straw, or wheat bran, and incubated at 30 °C for 3 d. Under the same conditions, 0.20, 0.61, 0.15, and 0.61 g/L of ethanol were detected in the culture supernatant of the strain with the recombinant plasmid containing cbhC16, whereas wild-type yeasts without the recombinant plasmid containing cbhC16 did not produce detectable ethanol levels. The results indicated that yeast strains with cbhC16 could directly saccharify and ferment cellulose to produce ethanol in singular step. This gene encoding both cellobiohydrolase and β-glucosidase activities will enable developing a simple approach for producing a consolidated microorganism that will directly convert cellulosic feedstocks to ethanol.

Suggested Citation

  • Liu, Jeng-Chen & Chang, Wan-Jhu & Hsu, Teng-Chieh & Chen, Hui-Jye & Chen, Yo-Chia, 2020. "Direct fermentation of cellulose to ethanol by Saccharomyces cerevisiae displaying a bifunctional cellobiohydrolase gene from Orpinomyces sp. Y102," Renewable Energy, Elsevier, vol. 159(C), pages 1029-1035.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:1029-1035
    DOI: 10.1016/j.renene.2020.05.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jain, Lavika & Agrawal, Deepti, 2018. "Performance evaluation of fungal cellulases with dilute acid pretreated sugarcane bagasse: A robust bioprospecting strategy for biofuel enzymes," Renewable Energy, Elsevier, vol. 115(C), pages 978-988.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kavitha, S. & Gajendran, T. & Saranya, K. & Selvakumar, P. & Manivasagan, V. & Jeevitha, S., 2022. "An insight - A statistical investigation of consolidated bioprocessing of Allium ascalonicum leaves to ethanol using Hangateiclostridium thermocellum KSMK1203 and synthetic consortium," Renewable Energy, Elsevier, vol. 187(C), pages 403-416.
    2. Liu, Chaoqi & Liu, Mengjie & Wang, Ping & Chang, Juan & Yin, Qingqiang & Zhu, Qun & Lu, Fushan, 2020. "Effect of steam-assisted alkaline pretreatment plus enzymolysis on converting corn stalk into reducing sugar," Renewable Energy, Elsevier, vol. 159(C), pages 982-990.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prajapati, Bhanu Pratap & Jana, Uttam Kumar & Suryawanshi, Rahul Kumar & Kango, Naveen, 2020. "Sugarcane bagasse saccharification using Aspergillus tubingensis enzymatic cocktail for 2G bio-ethanol production," Renewable Energy, Elsevier, vol. 152(C), pages 653-663.
    2. Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:1029-1035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.