IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp1377-1387.html
   My bibliography  Save this article

Clay-supported zinc oxide as catalyst in pyrolysis and deoxygenation of licuri (Syagrus coronata) oil

Author

Listed:
  • Oliveira, João Leonardo F.
  • Batista, Luana M.B.
  • Alburquerque dos Santos, Nataly
  • Araújo, Aruzza M.M.
  • Fernandes, Valter J.
  • Araujo, Antonio S.
  • Alves, Ana P.M.
  • Gondim, Amanda D.

Abstract

The vast majority of fuels used today are derived from non-renewable sources, causing climate change on the planet. In addition to the problems caused by these energy sources, there are processes for the refining of raw material, such as oil, where high-cost synthetic catalysts are used. In this work, vermiculite was used as catalyst and support for zinc oxide in the pyrolysis of licuri oil. Four catalysts were synthesized: zinc oxide, vermiculite supporting zinc oxide 1 and 6% (VZn1 and VZn6) and calcined vermiculite. The catalysts were characterized by X-ray diffraction analysis, X-ray fluorescence spectrometry, thermal analysis and nitrogen adsorption/desorption. The activation energy was determined using the Kissinger-Akahira-Sunose (KAS) kinetic model. The emitted gas analysis in the deoxygenation study was performed by thermogravimetric analysis coupled with Fourier Transfer Infrared Spectrometer (TGA-FTIR). Pyrolysis was performed in a pyrolyzer coupled to chromatography with mass spectrometry (Py-GC/MS) for the determination of the products. The catalysts showing the highest catalytic activity were vermiculite and VZn1, with activation energies lower than that for thermal pyrolysis. VZn1 showed higher activity in the formation of hydrocarbons (43.5%) by deoxygenation, indicating that zinc oxide associated with vermiculite is an option for the catalytic pyrolysis of biomass.

Suggested Citation

  • Oliveira, João Leonardo F. & Batista, Luana M.B. & Alburquerque dos Santos, Nataly & Araújo, Aruzza M.M. & Fernandes, Valter J. & Araujo, Antonio S. & Alves, Ana P.M. & Gondim, Amanda D., 2021. "Clay-supported zinc oxide as catalyst in pyrolysis and deoxygenation of licuri (Syagrus coronata) oil," Renewable Energy, Elsevier, vol. 168(C), pages 1377-1387.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1377-1387
    DOI: 10.1016/j.renene.2020.12.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenliang & Li, Xinping & Ye, Dan & Cai, LiPing & Shi, Sheldon Q., 2018. "Catalytic pyrolysis of larch sawdust for phenol-rich bio-oil using different catalysts," Renewable Energy, Elsevier, vol. 121(C), pages 146-152.
    2. Biswas, Bijoy & Singh, Rawel & Kumar, Jitendra & Singh, Raghuvir & Gupta, Piyush & Krishna, Bhavya B. & Bhaskar, Thallada, 2018. "Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil," Renewable Energy, Elsevier, vol. 129(PB), pages 686-694.
    3. Bergmann, J.C & Tupinambá, D.D & Costa, O.Y.A & Almeida, J.R.M & Barreto, C.C & Quirino, B.F, 2013. "Biodiesel production in Brazil and alternative biomass feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 411-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Souza, Márcio C.M. & Maia, Francisco A.D. & Pinto, Vasco L. & Costa, Maria J.F. & Araújo, Aruzza M.M. & da Silva, Djalma R. & Santos, Anne Gabriella D. & Gondim, Amanda D., 2023. "Highly porous cobalt and molybdenum-containing ordered silica applied to pyrolysis of sunflower oil into bio-hydrocarbons," Renewable Energy, Elsevier, vol. 215(C).
    2. Aline Scaramuzza Aquino & Milena Fernandes da Silva & Thiago Silva de Almeida & Filipe Neimaier Bilheri & Attilio Converti & James Correia de Melo, 2022. "Mapping of Alternative Oilseeds from the Brazilian Caatinga and Assessment of Catalytic Pathways toward Biofuels Production," Energies, MDPI, vol. 15(18), pages 1-25, September.
    3. Hu, Mian & Zhang, Haiyang & Ye, Zhiheng & Ma, Jiajia & Chen, Zhihua & Wang, Junliang & Wang, Cheng & Pan, Zhiyan, 2022. "Thermogravimetric kinetics and pyrolytic tri-state products analysis towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide," Renewable Energy, Elsevier, vol. 184(C), pages 498-509.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    2. Jiang, Haifeng & Liu, Haipeng & Dong, Jiaxin & Song, Jiaxing & Deng, Sunhua & Chen, Jie & Zhang, Yu & Hong, Wenpeng, 2022. "Enhancing ketones and syngas production by CO2-assisted catalytic pyrolysis of cellulose with the Ce–Co–Na ternary catalyst," Energy, Elsevier, vol. 250(C).
    3. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2020. "Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1339-1351.
    4. Kirtika Kohli & Ravindra Prajapati & Brajendra K. Sharma, 2019. "Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries," Energies, MDPI, vol. 12(2), pages 1-40, January.
    5. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Swinda F. Pfau & Janneke E. Hagens & Ben Dankbaar & Antoine J. M. Smits, 2014. "Visions of Sustainability in Bioeconomy Research," Sustainability, MDPI, vol. 6(3), pages 1-28, March.
    7. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.
    8. Osvalda Senneca & Barbara Apicella & Carmela Russo & Francesca Cerciello, 2022. "Biomass Behavior upon Fast Pyrolysis in Inert and in CO 2 -Rich Atmospheres: Role of Lignin, Hemicellulose and Cellulose Content," Energies, MDPI, vol. 15(15), pages 1-13, July.
    9. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    10. dos Santos Alves, Camila Elisa & Belarmino, Luiz Clovis & Padula, Antonio Domingos, 2017. "Feedstock diversification for biodiesel production in Brazil: Using the Policy Analysis Matrix (PAM) to evaluate the impact of the PNPB and the economic competitiveness of alternative oilseeds," Energy Policy, Elsevier, vol. 109(C), pages 297-309.
    11. Fang, Jun & Liu, Zhuangzhuang & Luan, Hui & Liu, Fen & Yuan, Xingzhong & Long, Shundong & Wang, Andong & Ma, Yong & Xiao, Zhihua, 2021. "Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions," Renewable Energy, Elsevier, vol. 167(C), pages 32-41.
    12. da Silva César, Aldara & Conejero, Marco Antonio & Barros Ribeiro, Eliene Cristina & Batalha, Mário Otávio, 2019. "Competitiveness analysis of “social soybeans” in biodiesel production in Brazil," Renewable Energy, Elsevier, vol. 133(C), pages 1147-1157.
    13. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    14. Gómez, M.F. & Téllez, A. & Silveira, S., 2015. "Exploring the effect of subsidies on small-scale renewable energy solutions in the Brazilian Amazon," Renewable Energy, Elsevier, vol. 83(C), pages 1200-1214.
    15. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    16. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Feng, Li & Li, Xuhao & Lin, Yinhe & Liang, Yicong & Chen, Yuning & Zhou, Wen, 2020. "Catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ru based catalyst: Effects of process parameters on conversion and products selectivity," Renewable Energy, Elsevier, vol. 160(C), pages 261-268.
    18. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    19. Fan, Yongsheng & Zhu, Mengfeng & Jin, Lizhu & Cui, Entian & Zhu, Lei & Cai, Yixi & Zhao, Weidong, 2020. "Catalytic upgrading of biomass-derived vapors to bio-fuels via modified HZSM-5 coupled with DBD: Effects of different titanium sources," Renewable Energy, Elsevier, vol. 157(C), pages 100-115.
    20. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1377-1387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.