IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp752-763.html
   My bibliography  Save this article

Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning

Author

Listed:
  • Pinciroli, Luca
  • Baraldi, Piero
  • Ballabio, Guido
  • Compare, Michele
  • Zio, Enrico

Abstract

Equipment of renewable energy systems are being supported by Prognostics & Health Management (PHM) capabilities to estimate their current health state and predict their Remaining Useful Life (RUL). The PHM health state estimates and RUL predictions can be used for the optimization of the systems Operation and Maintenance (O&M). This is an ambitious and challenging task, which requires to consider many factors, including the availability of maintenance crews, the variability of energy demand and production, the influence of the operating conditions on equipment performance and degradation and the long time horizons of renewable energy systems usage. We develop a novel formulation of the O&M optimization as a sequential decision problem and we resort to Deep Reinforcement Learning (DRL) to solve it. The proposed solution approach combines proximal policy optimization, imitation learning, for pre-training the learning agent, and a model of the environment which describes the renewable energy system behavior. The solution approach is tested by its application to a wind farm O&M problem. The optimal solution found is shown to outperform those provided by other DRL algorithms. Also, the approach does not require to select a-priori a maintenance strategy, but, rather, it discovers the best performing policy by itself.

Suggested Citation

  • Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:752-763
    DOI: 10.1016/j.renene.2021.11.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    2. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    3. Muhammad Shahzad Nazir & Fahad Alturise & Sami Alshmrany & Hafiz. M. J Nazir & Muhammad Bilal & Ahmad N. Abdalla & P. Sanjeevikumar & Ziad M. Ali, 2020. "Wind Generation Forecasting Methods and Proliferation of Artificial Neural Network: A Review of Five Years Research Trend," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    4. Njiri, Jackson G. & Beganovic, Nejra & Do, Manh H. & Söffker, Dirk, 2019. "Consideration of lifetime and fatigue load in wind turbine control," Renewable Energy, Elsevier, vol. 131(C), pages 818-828.
    5. Zhang, Chen & Gao, Wei & Guo, Sheng & Li, Youliang & Yang, Tao, 2017. "Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance," Renewable Energy, Elsevier, vol. 103(C), pages 606-612.
    6. Xi-liang Chen & Lei Cao & Chen-xi Li & Zhi-xiong Xu & Jun Lai, 2018. "Ensemble Network Architecture for Deep Reinforcement Learning," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-6, April.
    7. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2017. "On preventive maintenance of systems with lifetimes dependent on a random shock process," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 90-97.
    8. Zhang, Chen & Yang, Tao, 2021. "Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ," Renewable Energy, Elsevier, vol. 164(C), pages 1540-1549.
    9. Zhou, Yifan & Miao, Jindan & Yan, Bin & Zhang, Zhisheng, 2020. "Bio-objective long-term maintenance scheduling for wind turbines in multiple wind farms," Renewable Energy, Elsevier, vol. 160(C), pages 1136-1147.
    10. Maliheh Aramon Bajestani & Dragan Banjevic, 2016. "Calendar-based age replacement policy with dependent renewal cycles," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1016-1026, November.
    11. Jannie Sønderkær Nielsen & John Dalsgaard Sørensen, 2014. "Methods for Risk-Based Planning of O&M of Wind Turbines," Energies, MDPI, vol. 7(10), pages 1-20, October.
    12. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    13. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    14. Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Failure Modes, Effects and Criticality Analysis for Wind Turbines Considering Climatic Regions and Comparing Geared and Direct Drive Wind Turbines," Energies, MDPI, vol. 11(9), pages 1-18, September.
    15. Wang, Ling & Chu, Jian & Wu, Jun, 2007. "Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process," International Journal of Production Economics, Elsevier, vol. 107(1), pages 151-163, May.
    16. Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
    17. Nielsen, Jannie Jessen & Sørensen, John Dalsgaard, 2011. "On risk-based operation and maintenance of offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 218-229.
    18. Ding, Fangfang & Tian, Zhigang & Zhao, Fuqiong & Xu, Hao, 2018. "An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions," Renewable Energy, Elsevier, vol. 129(PA), pages 260-270.
    19. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    20. Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
    21. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    22. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    23. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si, Guojin & Xia, Tangbin & Li, Yaping & Wang, Dong & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2023. "Resource allocation and maintenance scheduling for distributed multi-center renewable energy systems considering dynamic scope division," Renewable Energy, Elsevier, vol. 217(C).
    2. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Zhang, Bin & Hu, Weihao & Xu, Xiao & Li, Tao & Zhang, Zhenyuan & Chen, Zhe, 2022. "Physical-model-free intelligent energy management for a grid-connected hybrid wind-microturbine-PV-EV energy system via deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 433-448.
    5. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Zhang, Guozhou & Hu, Weihao & Cao, Di & Zhou, Dao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Coordinated active and reactive power dynamic dispatch strategy for wind farms to minimize levelized production cost considering system uncertainty: A soft actor-critic approach," Renewable Energy, Elsevier, vol. 218(C).
    9. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Luca Pinciroli & Piero Baraldi & Guido Ballabio & Michele Compare & Enrico Zio, 2021. "Deep Reinforcement Learning Based on Proximal Policy Optimization for the Maintenance of a Wind Farm with Multiple Crews," Energies, MDPI, vol. 14(20), pages 1-17, October.
    4. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    5. Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    7. Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
    8. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    9. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    11. Ruiz Muñoz, G.A. & Sørensen, J.D., 2020. "Probabilistic inspection planning of offshore welds subject to the transition from protected to corrosive environment," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    13. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    14. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    15. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    16. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Shuo-Yan Chou & Xuan Loc Pham & Thi Anh Tuyet Nguyen & Tiffany Hui-Kuang Yu, 2023. "Optimal maintenance planning with special emphasis on deterioration process and vessel routing for offshore wind systems," Energy & Environment, , vol. 34(4), pages 739-763, June.
    18. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    19. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2016. "Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy," Renewable Energy, Elsevier, vol. 85(C), pages 104-113.
    20. Dong, Weiwei & Zhao, Guohua & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2022. "A novel hybrid decision making approach for the strategic selection of wind energy projects," Renewable Energy, Elsevier, vol. 185(C), pages 321-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:752-763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.