IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3140-d1493682.html
   My bibliography  Save this article

Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning

Author

Listed:
  • Antoni Guerrero

    (Baobab Soluciones, Jose Abascal 55, 28003 Madrid, Spain
    Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain)

  • Angel A. Juan

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Carbonell, 03801 Alcoy, Spain)

  • Alvaro Garcia-Sanchez

    (Department of Organization Engineering, Business Administration and Statistics, Universidad Politécnica de Madrid, Jose Abascal 2, 28006 Madrid, Spain)

  • Luis Pita-Romero

    (Baobab Soluciones, Jose Abascal 55, 28003 Madrid, Spain)

Abstract

In urban logistics, effective maintenance is crucial for maintaining the reliability and efficiency of energy supply systems, impacting both asset performance and operational stability. This paper addresses the scheduling and routing plans for maintenance of power generation assets over a multi-period horizon. We model this problem as a multi-period team orienteering problem. To address this multi-period challenge, we propose a dual approach: a novel reinforcement learning (RL) framework and a biased-randomized heuristic algorithm. The RL-based method dynamically learns from real-time operational data and evolving asset conditions, adapting to changes in asset health and failure probabilities to optimize decision making. In addition, we develop and apply a biased-randomized heuristic algorithm designed to provide effective solutions within practical computational limits. Our approach is validated through a series of computational experiments comparing the RL model and the heuristic algorithm. The results demonstrate that, when properly trained, the RL-based model is able to offer equivalent or even superior performance compared to the heuristic algorithm.

Suggested Citation

  • Antoni Guerrero & Angel A. Juan & Alvaro Garcia-Sanchez & Luis Pita-Romero, 2024. "Optimizing Maintenance of Energy Supply Systems in City Logistics with Heuristics and Reinforcement Learning," Mathematics, MDPI, vol. 12(19), pages 1-21, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3140-:d:1493682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
    2. Fontaine, Pirmin & Minner, Stefan & Schiffer, Maximilian, 2023. "Smart and sustainable city logistics: Design, consolidation, and regulation," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1071-1084.
    3. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    4. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    5. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    2. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    3. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.
    4. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    5. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    6. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    7. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    8. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    9. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    10. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    11. Ke, Liangjun & Zhai, Laipeng & Li, Jing & Chan, Felix T.S., 2016. "Pareto mimic algorithm: An approach to the team orienteering problem," Omega, Elsevier, vol. 61(C), pages 155-166.
    12. Kirac, Emre & Milburn, Ashlea Bennett, 2018. "A general framework for assessing the value of social data for disaster response logistics planning," European Journal of Operational Research, Elsevier, vol. 269(2), pages 486-500.
    13. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    14. Shima Azizi & Özge Aygül & Brenton Faber & Sharon Johnson & Renata Konrad & Andrew C. Trapp, 2023. "Select, route and schedule: optimizing community paramedicine service delivery with mandatory visits and patient prioritization," Health Care Management Science, Springer, vol. 26(4), pages 719-746, December.
    15. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.
    16. Ahn, Jaemyung & de Weck, Olivier & Geng, Yue & Klabjan, Diego, 2012. "Column generation based heuristics for a generalized location routing problem with profits arising in space exploration," European Journal of Operational Research, Elsevier, vol. 223(1), pages 47-59.
    17. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    18. Divsalar, A. & Vansteenwegen, P. & Cattrysse, D., 2013. "A variable neighborhood search method for the orienteering problem with hotel selection," International Journal of Production Economics, Elsevier, vol. 145(1), pages 150-160.
    19. Majsa Ammouriova & Massimo Bertolini & Juliana Castaneda & Angel A. Juan & Mattia Neroni, 2022. "A Heuristic-Based Simulation for an Education Process to Learn about Optimization Applications in Logistics and Transportation," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    20. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3140-:d:1493682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.