IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp423-434.html
   My bibliography  Save this article

Fatigue load suppression during active power control process in wind farm using dynamic-local-reference DMPC

Author

Listed:
  • Yao, Qi
  • Hu, Yang
  • Zhao, Tianyang
  • Guan, Yuanpeng
  • Luo, Zhiling
  • Liu, Jizhen

Abstract

Since the established wind farms (WFs) have a strong demand for reducing maintenance costs, the fatigue load suppression of wind turbines (WTs) has become more important in WFs. To suppress the fatigue load during operation, the traditional schemes are tried by allocating the optimized power setting value to each WT, which does not directly point to the key operating parameters that affect fatigue. In response to this, an advanced WT control model with two-degree-of-freedom (2Dof) is applied in this paper to ensure that the generator torque and pitch angle (two key parameters affecting fatigue load) of each WT are directly controlled. In order to achieve effective control of the above two parameters in multiple WTs, a hierarchical distributed control architecture with dynamic-local-reference is proposed to jointly optimize the above two configurable parameters at both the WT and WF levels. Several cases are compared to verify the proposed method, and simulation results show that the proposed 2Dof control model for WT and distributed control framework for WF can significantly reduce the fatigue load of each WT while completing the active power command of the whole WF.

Suggested Citation

  • Yao, Qi & Hu, Yang & Zhao, Tianyang & Guan, Yuanpeng & Luo, Zhiling & Liu, Jizhen, 2022. "Fatigue load suppression during active power control process in wind farm using dynamic-local-reference DMPC," Renewable Energy, Elsevier, vol. 183(C), pages 423-434.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:423-434
    DOI: 10.1016/j.renene.2021.10.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121015287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jin-hua & Liu, Yong-qian & Tian, De & Yan, Jie, 2015. "Optimal power dispatch in wind farm based on reduced blade damage and generator losses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 64-77.
    2. Jin, Yuqing & Ju, Ping & Rehtanz, Christian & Wu, Feng & Pan, Xueping, 2018. "Equivalent modeling of wind energy conversion considering overall effect of pitch angle controllers in wind farm," Applied Energy, Elsevier, vol. 222(C), pages 485-496.
    3. Merahi, Farid & Berkouk, El Madjid & Mekhilef, Saad, 2014. "New management structure of active and reactive power of a large wind farm based on multilevel converter," Renewable Energy, Elsevier, vol. 68(C), pages 814-828.
    4. Yao, Qi & Hu, Yang & Deng, Hui & Luo, Zhiling & Liu, Jizhen, 2020. "Two-degree-of-freedom active power control of megawatt wind turbine considering fatigue load optimization," Renewable Energy, Elsevier, vol. 162(C), pages 2096-2112.
    5. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    6. Liu, Jizhen & Yao, Qi & Hu, Yang, 2019. "Model predictive control for load frequency of hybrid power system with wind power and thermal power," Energy, Elsevier, vol. 172(C), pages 555-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Dongran & Tu, Yanping & Wang, Lei & Jin, Fangjun & Li, Ziqun & Huang, Chaoneng & Xia, E & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Hoon Joo, Young, 2022. "Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator," Applied Energy, Elsevier, vol. 312(C).
    2. Chen, Peng & Han, Dezhi, 2023. "Reward adaptive wind power tracking control based on deep deterministic policy gradient," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Qi & Hu, Yang & Deng, Hui & Luo, Zhiling & Liu, Jizhen, 2020. "Two-degree-of-freedom active power control of megawatt wind turbine considering fatigue load optimization," Renewable Energy, Elsevier, vol. 162(C), pages 2096-2112.
    2. Hongwei Li & Kaide Ren & Shuaibing Li & Haiying Dong, 2020. "Adaptive Multi-Model Switching Predictive Active Power Control Scheme for Wind Generator System," Energies, MDPI, vol. 13(6), pages 1-12, March.
    3. Baohua Zhang & Weihao Hu & Peng Hou & Jin Tan & Mohsen Soltani & Zhe Chen, 2017. "Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm," Energies, MDPI, vol. 10(7), pages 1-17, June.
    4. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    6. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    7. Youssef Ait Ali & Mohammed Ouassaid & Zineb Cabrane & Soo-Hyoung Lee, 2023. "Enhanced Primary Frequency Control Using Model Predictive Control in Large-Islanded Power Grids with High Penetration of DFIG-Based Wind Farm," Energies, MDPI, vol. 16(11), pages 1-24, May.
    8. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    9. Hyungyu Kim & Kwansu Kim & Insu Paek, 2019. "A Study on the Effect of Closed-Loop Wind Farm Control on Power and Tower Load in Derating the TSO Command Condition," Energies, MDPI, vol. 12(10), pages 1-19, May.
    10. Wang, Ni & Li, Jian & Hu, Weihao & Zhang, Baohua & Huang, Qi & Chen, Zhe, 2019. "Optimal reactive power dispatch of a full-scale converter based wind farm considering loss minimization," Renewable Energy, Elsevier, vol. 139(C), pages 292-301.
    11. Yuemin Zheng & Jin Tao & Hao Sun & Qinglin Sun & Zengqiang Chen & Matthias Dehmer & Quan Zhou, 2021. "Load Frequency Active Disturbance Rejection Control for Multi-Source Power System Based on Soft Actor-Critic," Energies, MDPI, vol. 14(16), pages 1-17, August.
    12. Zong, Haoxiang & Lyu, Jing & Wang, Xiao & Zhang, Chen & Zhang, Ruifang & Cai, Xu, 2021. "Grey box aggregation modeling of wind farm for wideband oscillations analysis," Applied Energy, Elsevier, vol. 283(C).
    13. Khokhar, Bhuvnesh & Parmar, K.P. Singh, 2023. "Utilizing diverse mix of energy storage for LFC performance enhancement of a microgrid: A novel MPC approach," Applied Energy, Elsevier, vol. 333(C).
    14. Kong, Xiaobing & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2023. "Stable feedback linearization-based economic MPC scheme for thermal power plant," Energy, Elsevier, vol. 268(C).
    15. Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
    16. Ma, Bin & Guo, Xing & Li, Penghui, 2023. "Adaptive energy management strategy based on a model predictive control with real-time tuning weight for hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    17. Shu, Tong & Song, Dongran & Hoon Joo, Young, 2022. "Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph," Applied Energy, Elsevier, vol. 306(PA).
    18. Chen, Zhenyu & Lin, Zhongwei & Ren, Xin & Chen, Kaixuan & Zhang, Guangming & Xie, Zhen & Wang, Chuanxi & She, Chao, 2023. "Amplitude-optimized Koopman-linear flow estimator for wind turbine wake dynamics: Approximation, prediction and reconstruction," Energy, Elsevier, vol. 263(PE).
    19. Duan, Zhu & Liu, Hui & Li, Ye & Nikitas, Nikolaos, 2022. "Time-variant post-processing method for long-term numerical wind speed forecasts based on multi-region recurrent graph network," Energy, Elsevier, vol. 259(C).
    20. He, Xiuqiang & Geng, Hua & Mu, Gang, 2021. "Modeling of wind turbine generators for power system stability studies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:423-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.