IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp814-828.html
   My bibliography  Save this article

New management structure of active and reactive power of a large wind farm based on multilevel converter

Author

Listed:
  • Merahi, Farid
  • Berkouk, El Madjid
  • Mekhilef, Saad

Abstract

This paper proposes a system of supervision and operation of a new structure wherein a large wind farm is connected to an electrical grid. The farm is managed in such a manner that it can produce the power needed by the grid system. The supervision algorithm is used to distribute the active and reactive power references to the wind turbines proportionally. Based on the aerodynamic power and wind speed of each turbine, the active and reactive power references are produced individually. By using the vector field oriented control, each doubly fed induction generator is controlled through the rotor, which is connected to the two-level pulse width modulation converter. The close loop control is used to provide a constant DC voltage using a five-level neutral point clamped converter. The five-level neutral point clamped converter allows also the adaptation of the voltage level to the electrical grid with better resolution waveform. The analysis of the simulation results shows the effectiveness of the proposed system.

Suggested Citation

  • Merahi, Farid & Berkouk, El Madjid & Mekhilef, Saad, 2014. "New management structure of active and reactive power of a large wind farm based on multilevel converter," Renewable Energy, Elsevier, vol. 68(C), pages 814-828.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:814-828
    DOI: 10.1016/j.renene.2014.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merahi, Farid & Berkouk, El Madjid, 2013. "Back-to-back five-level converters for wind energy conversion system with DC-bus imbalance minimization," Renewable Energy, Elsevier, vol. 60(C), pages 137-149.
    2. Tapia, A. & Tapia, G. & Ostolaza, J.X., 2004. "Reactive power control of wind farms for voltage control applications," Renewable Energy, Elsevier, vol. 29(3), pages 377-392.
    3. Hansen, Anca D. & Sørensen, Poul & Iov, Florin & Blaabjerg, Frede, 2006. "Centralised power control of wind farm with doubly fed induction generators," Renewable Energy, Elsevier, vol. 31(7), pages 935-951.
    4. Niknam, Taher, 2011. "A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators," Applied Energy, Elsevier, vol. 88(3), pages 778-788, March.
    5. Rodríguez-Amenedo, J.L. & Arnaltes, S. & Rodríguez, M.A., 2008. "Operation and coordinated control of fixed and variable speed wind farms," Renewable Energy, Elsevier, vol. 33(3), pages 406-414.
    6. Ghedamsi, K. & Aouzellag, D. & Berkouk, E.M., 2008. "Control of wind generator associated to a flywheel energy storage system," Renewable Energy, Elsevier, vol. 33(9), pages 2145-2156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Yao, Qi & Hu, Yang & Deng, Hui & Luo, Zhiling & Liu, Jizhen, 2020. "Two-degree-of-freedom active power control of megawatt wind turbine considering fatigue load optimization," Renewable Energy, Elsevier, vol. 162(C), pages 2096-2112.
    3. Baohua Zhang & Weihao Hu & Peng Hou & Jin Tan & Mohsen Soltani & Zhe Chen, 2017. "Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm," Energies, MDPI, vol. 10(7), pages 1-17, June.
    4. Wang, Ni & Li, Jian & Hu, Weihao & Zhang, Baohua & Huang, Qi & Chen, Zhe, 2019. "Optimal reactive power dispatch of a full-scale converter based wind farm considering loss minimization," Renewable Energy, Elsevier, vol. 139(C), pages 292-301.
    5. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    6. Yao, Qi & Hu, Yang & Zhao, Tianyang & Guan, Yuanpeng & Luo, Zhiling & Liu, Jizhen, 2022. "Fatigue load suppression during active power control process in wind farm using dynamic-local-reference DMPC," Renewable Energy, Elsevier, vol. 183(C), pages 423-434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    2. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    3. Siniscalchi-Minna, Sara & Bianchi, Fernando D. & De-Prada-Gil, Mikel & Ocampo-Martinez, Carlos, 2019. "A wind farm control strategy for power reserve maximization," Renewable Energy, Elsevier, vol. 131(C), pages 37-44.
    4. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    5. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    6. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Tengku Juhana Tengku Hashim & Azah Mohamed, 2017. "Optimal coordinated voltage control in active distribution networks using backtracking search algorithm," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-20, October.
    8. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    9. Belkacem Belabbas & Tayeb Allaoui & Mohamed Tadjine & Mouloud Denai, 2019. "Comparative study of back-stepping controller and super twisting sliding mode controller for indirect power control of wind generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1555-1566, December.
    10. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    11. Senjyu, Tomonobu & Kaneko, Toshiaki & Uehara, Akie & Yona, Atsushi & Sekine, Hideomi & Kim, Chul-Hwan, 2009. "Output power control for large wind power penetration in small power system," Renewable Energy, Elsevier, vol. 34(11), pages 2334-2343.
    12. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    13. Shi, Jie & Wang, Luhao & Lee, Wei-Jen & Cheng, Xingong & Zong, Xiju, 2019. "Hybrid Energy Storage System (HESS) optimization enabling very short-term wind power generation scheduling based on output feature extraction," Applied Energy, Elsevier, vol. 256(C).
    14. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    15. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    16. Mortazi, Mohammad & Moradi, Ahmad & Khosravi, Mohsen, 2020. "Simultaneous optimization of transformer tap changer and network capacitors to improve the distribution system’s static security considering distributed generation sources," MPRA Paper 109052, University Library of Munich, Germany, revised 01 Jul 2020.
    17. Zare, Mohsen & Niknam, Taher, 2013. "A new multi-objective for environmental and economic management of Volt/Var Control considering renewable energy resources," Energy, Elsevier, vol. 55(C), pages 236-252.
    18. Mensou, Sara & Essadki, Ahmed & Nasser, Tamou & Idrissi, Badre Bououlid & Ben Tarla, Lahssan, 2020. "Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1759-1771.
    19. Mesbahi, Tedjani & Ouari, Ahmed & Ghennam, Tarak & Berkouk, El Madjid & Rizoug, Nassim & Mesbahi, Nadhir & Meradji, Moudrik, 2014. "A stand-alone wind power supply with a Li-ion battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 204-213.
    20. Boynuegri, A.R. & Vural, B. & Tascikaraoglu, A. & Uzunoglu, M. & Yumurtacı, R., 2012. "Voltage regulation capability of a prototype Static VAr Compensator for wind applications," Applied Energy, Elsevier, vol. 93(C), pages 422-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:814-828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.