Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.03.117
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sharma, Yogesh Chandra & Kumar, Ashutosh & Prasad, Ram & Upadhyay, Siddh Nath, 2017. "Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 89-103.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
- Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
- Bogdan Ulejczyk & Paweł Jóźwik & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Conversion of Ethanol to Hydrogen in a Hybrid Plasma-Catalytic Reactor," Energies, MDPI, vol. 15(9), pages 1-11, April.
- Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Satinover, Scott J. & Schell, Dan & Borole, Abhijeet P., 2020. "Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products," Applied Energy, Elsevier, vol. 259(C).
- Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
- Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
- Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.
- Charisiou, N.D. & Italiano, C. & Pino, L. & Sebastian, V. & Vita, A. & Goula, M.A., 2020. "Hydrogen production via steam reforming of glycerol over Rh/γ-Al2O3 catalysts modified with CeO2, MgO or La2O3," Renewable Energy, Elsevier, vol. 162(C), pages 908-925.
- Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Nestor Sanchez & David Rodríguez-Fontalvo & Bernay Cifuentes & Nelly M. Cantillo & Miguel Ángel Uribe Laverde & Martha Cobo, 2021. "Biomass Potential for Producing Power via Green Hydrogen," Energies, MDPI, vol. 14(24), pages 1-18, December.
- Wang, Yishuang & Liang, Defang & Wang, Chunsheng & Chen, Mingqiang & Tang, Zhiyuan & Hu, Jiaxin & Yang, Zhonglian & Zhang, Han & Wang, Jun & Liu, Shaomin, 2020. "Influence of calcination temperature of Ni/Attapulgite on hydrogen production by steam reforming ethanol," Renewable Energy, Elsevier, vol. 160(C), pages 597-611.
- Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
More about this item
Keywords
Hydrogen production; Ethanol steam reforming; Cobalt; Nickel; Lanthanum; Ceria; Carbon deposition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:378-395. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.