IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v202y2023icp453-469.html
   My bibliography  Save this article

Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way

Author

Listed:
  • He, Kunpeng
  • Ye, Jianhong

Abstract

The offshore wind power industry has significantly contributed to the production of green energy in China and Europe etc. and made significant contributions to the reduction of carbon emissions. However, the extreme wave and wind loads in typhoon weather bring a great threat to the stability of offshore wind turbines (OWT). It is crucial to understand the dynamic characteristics of OWT and develop reliable methods of stability evaluation to guarantee the stability of OWT. In this study, taking the software FssiCAS as the computational platform, and taking the open-source solver OlaFlow to determine the wave impact on OWT and its seabed foundation, as well as the fluctuating wind theory is applied to estimate the wind load on the turbine blades and tower cylinder, the dynamic characteristics and stability of a monopile OWT with a capacity of 1500 kW in typhoon weather are investigated adopting a coupled way for the first time worldwide. The influence of the complex geometric shape and mass distribution of OWT is considered, and the generalized elastoplastic constitutive model, Pastor-Zienkiewicz-Mark III, is used to describe the complex dynamic behavior of the seabed foundation. The computational results show that the seabed soil within 4–5 m below the seafloor surface becomes liquefied under extreme wind and wave loads, resulting in the horizontal bearing capacity of the seabed foundation being weakened. As a result, the tower cylinder of OWT tilts aside by 0.5°, which exceeds the limit specified in some design codes. Through comparative analysis, it is found that the wind load contributes up to 50% to the lateral displacement of the OWT, and the maximum bending moment in the tower cylinder. It is indicated that wind loads can significantly affect the stability of OWTs. Additionally, this study proves that the software FssiCAS is applicable to evaluate the dynamics and the stability of OWTs under a complex marine dynamic environment. FssiCAS could hopefully become a computational platform for the design of OWTs.

Suggested Citation

  • He, Kunpeng & Ye, Jianhong, 2023. "Dynamics of offshore wind turbine-seabed foundation under hydrodynamic and aerodynamic loads: A coupled numerical way," Renewable Energy, Elsevier, vol. 202(C), pages 453-469.
  • Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:453-469
    DOI: 10.1016/j.renene.2022.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201669X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2020. "Liquefaction characteristics of offshore wind turbine with hybrid monopile foundation via centrifuge modelling," Renewable Energy, Elsevier, vol. 145(C), pages 2358-2372.
    2. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2018. "Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling," Applied Energy, Elsevier, vol. 209(C), pages 127-139.
    3. Kim, Dong Hyawn & Lee, Sang Geun & Lee, Il Keun, 2014. "Seismic fragility analysis of 5 MW offshore wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 250-256.
    4. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    5. Charlton, T.S. & Rouainia, M., 2022. "Geotechnical fragility analysis of monopile foundations for offshore wind turbines in extreme storms," Renewable Energy, Elsevier, vol. 182(C), pages 1126-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satish Jawalageri & Subhamoy Bhattacharya & Soroosh Jalilvand & Abdollah Malekjafarian, 2024. "A Comparative Study on Load Assessment Methods for Offshore Wind Turbines Using a Simplified Method and OpenFAST Simulations," Energies, MDPI, vol. 17(9), pages 1-19, May.
    2. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    2. Guo, Yaohua & Zhang, Puyang & Ding, Hongyan & Le, Conghuan, 2021. "Design and verification of the loading system and boundary conditions for wind turbine foundation model experiment," Renewable Energy, Elsevier, vol. 172(C), pages 16-33.
    3. Li, Dayong & Zhao, Jipeng & Wu, Yuqi & Zhang, Yukun & Liang, Hao, 2024. "An innovative bionic offshore wind foundation: Scaled suction caisson," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    5. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.
    6. Zi Lin & Xiaolei Liu, 2020. "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic Modelling on the Effects of Mooring Line Tension via Deep Learning," Energies, MDPI, vol. 13(9), pages 1-21, May.
    7. Li, Jiale & Wang, Xuefei & Guo, Yuan & Yu, Xiong Bill, 2020. "The loading behavior of innovative monopile foundations for offshore wind turbine based on centrifuge experiments," Renewable Energy, Elsevier, vol. 152(C), pages 1109-1120.
    8. Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.
    9. Li, Xinyao & Zeng, Xiangwu & Yu, Xiong & Wang, Xuefei, 2021. "Seismic response of a novel hybrid foundation for offshore wind turbine by geotechnical centrifuge modeling," Renewable Energy, Elsevier, vol. 172(C), pages 1404-1416.
    10. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    11. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    12. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
    14. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    15. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    16. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings," Energies, MDPI, vol. 13(7), pages 1-23, March.
    17. Wang, Xuefei & Zeng, Xiangwu & Yang, Xu & Li, Jiale, 2019. "Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling," Applied Energy, Elsevier, vol. 235(C), pages 1335-1350.
    18. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    19. Ju, Shen-Haw & Huang, Yu-Cheng & Huang, Yin-Yu, 2020. "Study of optimal large-scale offshore wind turbines," Renewable Energy, Elsevier, vol. 154(C), pages 161-174.
    20. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:202:y:2023:i:c:p:453-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.