IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp630-639.html
   My bibliography  Save this article

Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms

Author

Listed:
  • Warguła, Łukasz
  • Kukla, Mateusz
  • Wieczorek, Bartosz
  • Krawiec, Piotr

Abstract

The article presents results of research on commercially used cutting mechanisms of low-power (about 10 kW) wood size reduction machines driven by small engines. The energy consumed was determined based on work demand, showing that two-cylinder cutting mechanism consumes less energy than disc cutting mechanism and drum cutting mechanism when wood size reduction various species of wood, within the cross-section range from 10 × 10 mm to 50 × 50 mm. The main application of the tested machines is the reduction of branch volume when maintaining the infrastructure of urban green areas, in order to facilitate their transport. The average increase in energy consumption required for the size reduction of a single 2-m-long timber beam relative to the most energy-efficient mechanism (two-cylinder cutting mechanism) may range from 369% to 478%, while the average energy consumed during 1 h of continuous wood size reduction machines operation may increase relative to the least energy-efficient mechanism from 80% to 188%. The average productivity when reducing the size of the wood of the tested machines depending on the cutting mechanism ranges from 0.47 tons/h to 0.06 tons/h. The greatest productivity is characterized by the two-cylindrical mechanism cutting 0.88 tons/h.

Suggested Citation

  • Warguła, Łukasz & Kukla, Mateusz & Wieczorek, Bartosz & Krawiec, Piotr, 2022. "Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms," Renewable Energy, Elsevier, vol. 181(C), pages 630-639.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:630-639
    DOI: 10.1016/j.renene.2021.09.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spinelli, Raffaele & Cavallo, Eugenio & Eliasson, Lars & Facello, Alessio & Magagnotti, Natascia, 2015. "The effect of drum design on chipper performance," Renewable Energy, Elsevier, vol. 81(C), pages 57-61.
    2. Ralf Pecenka & Hannes Lenz & Simeon Olatayo Jekayinfa & Thomas Hoffmann, 2020. "Influence of Tree Species, Harvesting Method and Storage on Energy Demand and Wood Chip Quality When Chipping Poplar, Willow and Black Locust," Agriculture, MDPI, vol. 10(4), pages 1-15, April.
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    4. Perić, M. & Antonijević, D. & Komatina, M. & Bugarski, B. & Rakin, M., 2020. "Life cycle assessment of wood chips supply chain in Serbia," Renewable Energy, Elsevier, vol. 155(C), pages 1302-1311.
    5. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    6. Manzone, Marco, 2015. "Energy consumption and CO2 analysis of different types of chippers used in wood biomass plantations," Applied Energy, Elsevier, vol. 156(C), pages 686-692.
    7. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    8. Nati, Carla & Boschiero, Martina & Picchi, Gianni & Mastrolonardo, Giovanni & Kelderer, Markus & Zerbe, Stefan, 2018. "Energy performance of a new biomass harvester for recovery of orchard wood wastes as alternative to mulching," Renewable Energy, Elsevier, vol. 124(C), pages 121-128.
    9. Acampora, Andrea & Croce, Sara & Assirelli, Alberto & Del Giudice, Angelo & Spinelli, Raffaele & Suardi, Alessandro & Pari, Luigi, 2013. "Product contamination and harvesting losses from mechanized recovery of olive tree pruning residues for energy use," Renewable Energy, Elsevier, vol. 53(C), pages 350-353.
    10. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    11. Rezaei, Hamid & Sokhansanj, Shahab, 2018. "Physical and thermal characterization of ground bark and ground wood particles," Renewable Energy, Elsevier, vol. 129(PA), pages 583-590.
    12. Alessandro Suardi & Francesco Latterini & Vincenzo Alfano & Nadia Palmieri & Simone Bergonzoli & Luigi Pari, 2020. "Analysis of the Work Productivity and Costs of a Stationary Chipper Applied to the Harvesting of Olive Tree Pruning for Bio-Energy Production," Energies, MDPI, vol. 13(6), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Kaczmarzyk & Łukasz Warguła & Paweł Janik & Piotr Krawiec, 2022. "Influence of Measurement Methodologies for the Volumetric Air Flow Rate of Mobile Positive Pressure Fans on Drive Unit Performance," Energies, MDPI, vol. 15(11), pages 1-12, May.
    2. Łukasz Warguła & Piotr Kaczmarzyk & Piotr Lijewski & Paweł Fuć & Filip Markiewicz & Daniel Małozięć & Bartosz Wieczorek, 2023. "Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit," Energies, MDPI, vol. 16(11), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beáta Stehlíková & Katarína Čulková & Marcela Taušová & Ľubomír Štrba & Eva Mihaliková, 2021. "Evaluation of Communal Waste in Slovakia from the View of Chosen Economic Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption," Energies, MDPI, vol. 13(24), pages 1-21, December.
    4. Francesco Latterini & Walter Stefanoni & Alessandro Suardi & Vincenzo Alfano & Simone Bergonzoli & Nadia Palmieri & Luigi Pari, 2020. "A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs," Energies, MDPI, vol. 13(13), pages 1-17, July.
    5. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    6. Alessandro Suardi & Francesco Latterini & Vincenzo Alfano & Nadia Palmieri & Simone Bergonzoli & Emmanouil Karampinis & Michael Alexandros Kougioumtzis & Panagiotis Grammelis & Luigi Pari, 2020. "Machine Performance and Hog Fuel Quality Evaluation in Olive Tree Pruning Harvesting Conducted Using a Towed Shredder on Flat and Hilly Fields," Energies, MDPI, vol. 13(7), pages 1-16, April.
    7. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    8. Łukasz Warguła & Piotr Kaczmarzyk & Piotr Lijewski & Paweł Fuć & Filip Markiewicz & Daniel Małozięć & Bartosz Wieczorek, 2023. "Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit," Energies, MDPI, vol. 16(11), pages 1-13, June.
    9. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    10. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    11. Arkadiusz Dyjakon, 2019. "The Influence of Apple Orchard Management on Energy Performance and Pruned Biomass Harvesting for Energetic Applications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    12. Arkadiusz Dyjakon, 2018. "The Influence of the Use of Windrowers in Baler Machinery on the Energy Balance during Pruned Biomass Harvesting in the Apple Orchard," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    14. Chapela, Sergio & Cid, Natalia & Porteiro, Jacobo & Míguez, José Luis, 2020. "Numerical transient modelling of the fouling phenomena and its influence on thermal performance in a low-scale biomass shell boiler," Renewable Energy, Elsevier, vol. 161(C), pages 309-318.
    15. Hamid Rezaei & Fahimeh Yazdan Panah & C. Jim Lim & Shahab Sokhansanj, 2020. "Pelletization of Refuse-Derived Fuel with Varying Compositions of Plastic, Paper, Organic and Wood," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
    16. Zhang, Shuai & Lei, Qingyu & Wu, Le & Wang, Yuqi & Zheng, Lan & Chen, Xi, 2022. "Supply chain design and integration for the Co-Processing of bio-oil and vacuum gas oil in a refinery," Energy, Elsevier, vol. 241(C).
    17. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    18. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Piotr Kaczmarzyk & Łukasz Warguła & Paweł Janik & Piotr Krawiec, 2022. "Influence of Measurement Methodologies for the Volumetric Air Flow Rate of Mobile Positive Pressure Fans on Drive Unit Performance," Energies, MDPI, vol. 15(11), pages 1-12, May.
    20. Michela Zanetti & Corrado Costa & Rosa Greco & Stefano Grigolato & Giovanna Ottaviani Aalmo & Raffaele Cavalli, 2017. "How Wood Fuels’ Quality Relates to the Standards: A Class-Modelling Approach," Energies, MDPI, vol. 10(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:630-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.