IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp292-303.html
   My bibliography  Save this article

A detailed account of calculation of shading and blocking factor of a heliostat field

Author

Listed:
  • Rizvi, Arslan A.
  • Yang, Dong

Abstract

The shading and blocking factor plays a significant role in the design of a heliostat field. It is the most computationally expensive task during the optimization process of a heliostat field. Over time, different methods have been developed to calculate the extent of the optical losses associated with shading and blocking. This paper focuses on the famous center point projection method and its implementation using Matlab. This work provides detailed procedures from the perspective of programming and simulation of central receiver systems. The underlying assumptions, the algorithm's strengths, and weaknesses are highlighted. The procedure and simulation parameters will help in developing optimization algorithms for designing high-efficiency heliostat fields. A dense radial staggered heliostat field is used for testing the performance of the algorithm. The field efficiency is calculated at different design points. The results show that the shading loss of the field changes with time, whereas there is negligible variation in the blocking loss. The instantaneous shading loss of a dense radial staggered field on December 21, noontime is 2.12%, whereas the blocking loss is 1.52%.

Suggested Citation

  • Rizvi, Arslan A. & Yang, Dong, 2022. "A detailed account of calculation of shading and blocking factor of a heliostat field," Renewable Energy, Elsevier, vol. 181(C), pages 292-303.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:292-303
    DOI: 10.1016/j.renene.2021.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Maolong & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout," Renewable Energy, Elsevier, vol. 87(P1), pages 720-730.
    2. Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
    3. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    4. Piroozmand, Pasha & Boroushaki, Mehrdad, 2016. "A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions," Energy, Elsevier, vol. 106(C), pages 240-252.
    5. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    6. Leonardi, Erminia & D’Aguanno, Bruno, 2011. "CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system," Energy, Elsevier, vol. 36(8), pages 4828-4837.
    7. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    8. Besarati, Saeb M. & Yogi Goswami, D., 2014. "A computationally efficient method for the design of the heliostat field for solar power tower plant," Renewable Energy, Elsevier, vol. 69(C), pages 226-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Zongxian & An, Wei, 2022. "Promote optical performance of linear Fresnel micro-concentrator by an offset-axis mirror layout in building-integrated PV/T application," Renewable Energy, Elsevier, vol. 200(C), pages 1047-1058.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    2. Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    3. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    4. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    5. Arrif, Toufik & Hassani, Samir & Guermoui, Mawloud & Sánchez-González, A. & A.Taylor, Robert & Belaid, Abdelfetah, 2022. "GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design," Renewable Energy, Elsevier, vol. 192(C), pages 745-758.
    6. Chao Li & Rongrong Zhai & Yongping Yang, 2017. "Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm," Energies, MDPI, vol. 10(11), pages 1-15, November.
    7. Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
    8. Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
    9. Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "Heliostat layout optimization for load-following solar tower plants," Renewable Energy, Elsevier, vol. 168(C), pages 393-405.
    10. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    11. Wang, Chen & Guo, Su & Pei, Huanjin & He, Yi & Liu, Deyou & Li, Mengying, 2023. "Rolling optimization based on holism for the operation strategy of solar tower power plant," Applied Energy, Elsevier, vol. 331(C).
    12. Ortega, Guillermo & Rovira, Antonio, 2020. "A fast and accurate methodology for the calculation of the shading and blocking efficiency in central receiver systems," Renewable Energy, Elsevier, vol. 154(C), pages 58-70.
    13. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Wang, Shuang & Asselineau, Charles-Alexis & Fontalvo, Armando & Wang, Ye & Logie, William & Pye, John & Coventry, Joe, 2023. "Co-optimisation of the heliostat field and receiver for concentrated solar power plants," Applied Energy, Elsevier, vol. 348(C).
    15. Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
    16. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    17. Cruz, N.C. & Salhi, S. & Redondo, J.L. & Álvarez, J.D. & Berenguel, M. & Ortigosa, P.M., 2018. "Hector, a new methodology for continuous and pattern-free heliostat field optimization," Applied Energy, Elsevier, vol. 225(C), pages 1123-1131.
    18. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    19. Liu, Zengqiang & Lin, Xiaoxia & Zhao, Yuhong & Feng, Jieqing, 2023. "Determination of simulation parameters in Monte Carlo ray tracing for radiative flux density distribution simulation," Energy, Elsevier, vol. 276(C).
    20. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:292-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.