IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1924-d119785.html
   My bibliography  Save this article

Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm

Author

Listed:
  • Chao Li

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Rongrong Zhai

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Yongping Yang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Of all the renewable power generation technologies, solar tower power system is expected to be the most promising technology that is capable of large-scale electricity production. However, the optimization of heliostat field layout is a complicated process, in which thousands of heliostats have to be considered for any heliostat field optimization process. Therefore, in this paper, in order to optimize the heliostat field to obtain the highest energy collected per unit cost (ECUC), a mathematical model of a heliostat field and a hybrid algorithm combining particle swarm optimization algorithm and genetic algorithm (PSO-GA) are coded in Matlab and the heliostat field in Lhasa is investigated as an example. The results show that, after optimization, the annual efficiency of the heliostat field increases by approximately six percentage points, and the ECUC increases from 12.50 MJ/USD to 12.97 MJ/USD, increased about 3.8%. Studies on the key parameters indicate that: for un-optimized filed, ECUC first peaks and then decline with the increase of the number of heliostats in the first row of the field (Nhel 1 ). By contrast, for optimized field, ECUC increases with Nhel 1 . What is more, for both the un-optimized and optimized field, ECUC increases with tower height and decreases with the cost of heliostat mirror collector.

Suggested Citation

  • Chao Li & Rongrong Zhai & Yongping Yang, 2017. "Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm," Energies, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1924-:d:119785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piroozmand, Pasha & Boroushaki, Mehrdad, 2016. "A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions," Energy, Elsevier, vol. 106(C), pages 240-252.
    2. Wei, Xiudong & Lu, Zhenwu & Wang, Zhifeng & Yu, Weixing & Zhang, Hongxing & Yao, Zhihao, 2010. "A new method for the design of the heliostat field layout for solar tower power plant," Renewable Energy, Elsevier, vol. 35(9), pages 1970-1975.
    3. Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
    4. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    5. Zhang, Maolong & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout," Renewable Energy, Elsevier, vol. 87(P1), pages 720-730.
    6. Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
    7. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    8. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    9. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    10. Besarati, Saeb M. & Yogi Goswami, D., 2014. "A computationally efficient method for the design of the heliostat field for solar power tower plant," Renewable Energy, Elsevier, vol. 69(C), pages 226-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    2. Khosravi, Soheil & Neshat, Elaheh & Saray, Rahim Khoshbakhti, 2023. "Thermodynamic analysis of a sorption-enhanced gasification process of municipal solid waste, integrated with concentrated solar power and thermal energy storage systems for co-generation of power and ," Renewable Energy, Elsevier, vol. 214(C), pages 140-153.
    3. Manuel J. Blanco & Victor Grigoriev & Kypros Milidonis & George Tsouloupas & Miguel Larrañeta & Manuel Silva, 2021. "Minimizing the Computational Effort to Optimize Solar Concentrators with the Open-Source Tools SunPATH and Tonatiuh++," Energies, MDPI, vol. 14(15), pages 1-20, July.
    4. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    5. José de Jesús Jaramillo Serna & Jesús M. López-Lezama, 2019. "Calculation of Distance Protection Settings in Mutually Coupled Transmission Lines: A Comparative Analysis," Energies, MDPI, vol. 12(7), pages 1-32, April.
    6. Tusongjiang Kari & Wensheng Gao & Ayiguzhali Tuluhong & Yilihamu Yaermaimaiti & Ziwei Zhang, 2018. "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers," Energies, MDPI, vol. 11(9), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    2. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    3. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    4. Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
    5. Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    6. Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
    7. Rizvi, Arslan A. & Yang, Dong, 2022. "A detailed account of calculation of shading and blocking factor of a heliostat field," Renewable Energy, Elsevier, vol. 181(C), pages 292-303.
    8. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    9. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    10. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    11. Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
    12. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic evaluation of water-injected air bottoming cycles hybridization using heliostat field collector: Comparative analyses," Energy, Elsevier, vol. 119(C), pages 1230-1246.
    13. Cruz, N.C. & Salhi, S. & Redondo, J.L. & Álvarez, J.D. & Berenguel, M. & Ortigosa, P.M., 2018. "Hector, a new methodology for continuous and pattern-free heliostat field optimization," Applied Energy, Elsevier, vol. 225(C), pages 1123-1131.
    14. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    15. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    16. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    17. Arrif, Toufik & Hassani, Samir & Guermoui, Mawloud & Sánchez-González, A. & A.Taylor, Robert & Belaid, Abdelfetah, 2022. "GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design," Renewable Energy, Elsevier, vol. 192(C), pages 745-758.
    18. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    19. Serrano-Arrabal, J. & Serrano-Aguilera, J.J. & Sánchez-González, A., 2021. "Dual-tower CSP plants: optical assessment and optimization with a novel cone-tracing model," Renewable Energy, Elsevier, vol. 178(C), pages 429-442.
    20. García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1924-:d:119785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.