Tilt–Roll Heliostats and Non-Flat Heliostat Field Topographies for Compact, Energy-Dense Rooftop-Scale and Urban Central Receiver Solar Thermal Systems for Sustainable Industrial Process Heat
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Richard P. Fisher & Allan Lewandowski & Tesfayohanes W. Yacob & Barbara J. Ward & Lauren M. Hafford & Ryan B. Mahoney & Cori J. Oversby & Dragan Mejic & Dana H. Hauschulz & R. Scott Summers & Karl G. , 2021. "Solar Thermal Processing to Disinfect Human Waste," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
- Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "Heliostat layout optimization for load-following solar tower plants," Renewable Energy, Elsevier, vol. 168(C), pages 393-405.
- Guillermo Ortega & Rubén Barbero & Antonio Rovira, 2024. "Global Methods for Calculating Shading and Blocking Efficiency in Central Receiver Systems," Energies, MDPI, vol. 17(6), pages 1-18, March.
- Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
- Wagner, Michael J. & Newman, Alexandra M. & Hamilton, William T. & Braun, Robert J., 2017. "Optimized dispatch in a first-principles concentrating solar power production model," Applied Energy, Elsevier, vol. 203(C), pages 959-971.
- Rizvi, Arslan A. & Yang, Dong, 2022. "A detailed account of calculation of shading and blocking factor of a heliostat field," Renewable Energy, Elsevier, vol. 181(C), pages 292-303.
- Besarati, Saeb M. & Yogi Goswami, D., 2014. "A computationally efficient method for the design of the heliostat field for solar power tower plant," Renewable Energy, Elsevier, vol. 69(C), pages 226-232.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rizvi, Arslan A. & Yang, Dong, 2022. "A detailed account of calculation of shading and blocking factor of a heliostat field," Renewable Energy, Elsevier, vol. 181(C), pages 292-303.
- Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "The optimal share of PV and CSP for highly renewable power systems in the GCC region," Renewable Energy, Elsevier, vol. 179(C), pages 1990-2003.
- Cruz, N.C. & Salhi, S. & Redondo, J.L. & Álvarez, J.D. & Berenguel, M. & Ortigosa, P.M., 2018. "Hector, a new methodology for continuous and pattern-free heliostat field optimization," Applied Energy, Elsevier, vol. 225(C), pages 1123-1131.
- Dhikra Derbal & Abdallah Abderrezak & Seif Eddine Chehaidia & Majdi T. Amin & Mohamed I. Mosaad & Tarek A. Abdul-Fattah, 2023. "Parametric Study and Optimization of No-Blocking Heliostat Field Layout," Energies, MDPI, vol. 16(13), pages 1-21, June.
- Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
- Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
- Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
- Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
- Arrif, Toufik & Hassani, Samir & Guermoui, Mawloud & Sánchez-González, A. & A.Taylor, Robert & Belaid, Abdelfetah, 2022. "GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design," Renewable Energy, Elsevier, vol. 192(C), pages 745-758.
- Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
- Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
- Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
- Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
- Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
- Chao Li & Rongrong Zhai & Yongping Yang, 2017. "Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm," Energies, MDPI, vol. 10(11), pages 1-15, November.
- García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.
- Wang, Chen & Guo, Su & Pei, Huanjin & He, Yi & Liu, Deyou & Li, Mengying, 2023. "Rolling optimization based on holism for the operation strategy of solar tower power plant," Applied Energy, Elsevier, vol. 331(C).
- Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
- Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
- Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
More about this item
Keywords
concentrating solar thermal; central receiver; Tilt–Roll heliostat; ray-tracing simulation; non-flat heliostat field layout; industrial rooftop scale; urban CSP;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:426-:d:1570583. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.