IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics0360544223009805.html
   My bibliography  Save this article

Determination of simulation parameters in Monte Carlo ray tracing for radiative flux density distribution simulation

Author

Listed:
  • Liu, Zengqiang
  • Lin, Xiaoxia
  • Zhao, Yuhong
  • Feng, Jieqing

Abstract

Determining appropriate simulation parameters in Monte Carlo Ray Tracing simulation, including receiver pixel size, micro-heliostat size and the number of rays, according to scene parameters, such as receiver size, heliostat size, slope error and slant range, can improve simulation accuracy while maintaining simulation efficiency. By means of simulation experiments and data fitting, the effects of simulation parameters on simulation accuracy and efficiency are studied in this paper. First, two evaluation metrics about the flux peak stability and distribution accuracy are proposed and the appropriate receiver pixel size, namely 0.1 m×0.1 m, is determined based on these metrics. Then, the optimal micro-heliostat size, namely 0.05 m×0.05 m, is determined under the condition of ensuring the flux distribution accuracy and simulation efficiency. Finally, when the flux distribution deviation converges to an acceptable value, the empirical functions between the minimum number of rays and the scene parameters are obtained for single-heliostat simulation and heliostat field simulation, respectively. The minimum number of rays is proportional to the area of the reflected ray cone base in single-heliostat simulation and is related to the cylindrical receiver radius and height in heliostat field simulation. The results are validated using practical heliostat field.

Suggested Citation

  • Liu, Zengqiang & Lin, Xiaoxia & Zhao, Yuhong & Feng, Jieqing, 2023. "Determination of simulation parameters in Monte Carlo ray tracing for radiative flux density distribution simulation," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009805
    DOI: 10.1016/j.energy.2023.127586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223009805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiesi, Matteo & Vanzolini, Luca & Franchi Scarselli, Eleonora & Guerrieri, Roberto, 2013. "Accurate optical model for design and analysis of solar fields based on heterogeneous multicore systems," Renewable Energy, Elsevier, vol. 55(C), pages 241-251.
    2. Huang, Weidong & Yu, Liang, 2018. "Development of a new flux density function for a focusing heliostat," Energy, Elsevier, vol. 151(C), pages 358-375.
    3. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    4. Manuel J. Blanco & Victor Grigoriev & Kypros Milidonis & George Tsouloupas & Miguel Larrañeta & Manuel Silva, 2021. "Minimizing the Computational Effort to Optimize Solar Concentrators with the Open-Source Tools SunPATH and Tonatiuh++," Energies, MDPI, vol. 14(15), pages 1-20, July.
    5. Lin, Xiaoxia & He, Caitou & Huang, Wenjun & Zhao, Yuhong & Feng, Jieqing, 2022. "GPU-based Monte Carlo ray tracing simulation considering refraction for central receiver system," Renewable Energy, Elsevier, vol. 193(C), pages 367-382.
    6. Piroozmand, Pasha & Boroushaki, Mehrdad, 2016. "A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions," Energy, Elsevier, vol. 106(C), pages 240-252.
    7. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    8. Leonardi, Erminia & D’Aguanno, Bruno, 2011. "CRS4-2: A numerical code for the calculation of the solar power collected in a central receiver system," Energy, Elsevier, vol. 36(8), pages 4828-4837.
    9. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Ashley, Thomas & Carrizosa, Emilio & Fernández-Cara, Enrique, 2017. "Optimisation of aiming strategies in Solar Power Tower plants," Energy, Elsevier, vol. 137(C), pages 285-291.
    11. Sun, Lulening & Zong, Chenggang & Yu, Liang & Huang, Weidong, 2019. "Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish," Energy, Elsevier, vol. 180(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Qiang & Li, Zihao & Zhao, Wenyao & Zhang, Gaocheng & Xiong, Xinyu & Wu, Zhiyong, 2024. "Modeling and control strategy optimizing of solar flux distribution in a four quadrant and adjustable focusing solar furnace," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
    2. Rizvi, Arslan A. & Yang, Dong, 2022. "A detailed account of calculation of shading and blocking factor of a heliostat field," Renewable Energy, Elsevier, vol. 181(C), pages 292-303.
    3. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    4. Ruidi Zhu & Dong Ni, 2023. "A Model Predictive Control Approach for Heliostat Field Power Regulatory Aiming Strategy under Varying Cloud Shadowing Conditions," Energies, MDPI, vol. 16(7), pages 1-19, March.
    5. Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    6. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Wang, Shuang & Asselineau, Charles-Alexis & Fontalvo, Armando & Wang, Ye & Logie, William & Pye, John & Coventry, Joe, 2023. "Co-optimisation of the heliostat field and receiver for concentrated solar power plants," Applied Energy, Elsevier, vol. 348(C).
    8. Chiesi, Matteo & Franchi Scarselli, Eleonora & Guerrieri, Roberto, 2017. "Run-time detection and correction of heliostat tracking errors," Renewable Energy, Elsevier, vol. 105(C), pages 702-711.
    9. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    10. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    11. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    12. Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
    13. Carrizosa, E. & Domínguez-Bravo, C. & Fernández-Cara, E. & Quero, M., 2015. "Optimization of multiple receivers solar power tower systems," Energy, Elsevier, vol. 90(P2), pages 2085-2093.
    14. Harnpon Phungrassami & Phairat Usubharatana, 2024. "Development and Analysis of the Heliostat Curve Tracing Parametric Model (HCTPM) for Sustainable Solar Energy in Sun-Tracking Concentrated Solar Power Systems," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    15. García, Jesús & Barraza, Rodrigo & Soo Too, Yen Chean & Vásquez-Padilla, Ricardo & Acosta, David & Estay, Danilo & Valdivia, Patricio, 2022. "Transient simulation of a control strategy for solar receivers based on mass flow valves adjustments and heliostats aiming," Renewable Energy, Elsevier, vol. 185(C), pages 1221-1244.
    16. Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "Heliostat layout optimization for load-following solar tower plants," Renewable Energy, Elsevier, vol. 168(C), pages 393-405.
    17. Jafrancesco, David & Cardoso, Joao P. & Mutuberria, Amaia & Leonardi, Erminia & Les, Iñigo & Sansoni, Paola & Francini, Franco & Fontani, Daniela, 2018. "Optical simulation of a central receiver system: Comparison of different software tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 792-803.
    18. Zhang, Maolong & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout," Renewable Energy, Elsevier, vol. 87(P1), pages 720-730.
    19. Omar Behar & Daniel Sbarbaro & Luis Morán, 2020. "A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    20. Yamani, Noureddine & Khellaf, Abdallah & Mohammedi, Kamal & Behar, Omar, 2017. "Assessment of solar thermal tower technology under Algerian climate," Energy, Elsevier, vol. 126(C), pages 444-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.