IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp240-252.html
   My bibliography  Save this article

A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions

Author

Listed:
  • Piroozmand, Pasha
  • Boroushaki, Mehrdad

Abstract

In multi-tower heliostat fields, although heliostats are capable of aiming at different receivers during the day, due to different orientations, neighboring heliostats might affect shading and blocking efficiency of each other reciprocally. In the proposed method of this paper, considering the mentioned effects and based on a group decision-making approach, each heliostat chooses the best receiver thus ensuring the highest possible instantaneous efficiency of the field. As a case study, this method is applied for the optimal design of a multi-tower field. Then, the field performance is simulated in a case where heliostats make decisions individually without considering the interactions. Finally, these results are compared with separated single tower fields' energy performance. Results of the case study show that, due to the high dependency on shading and blocking factor, the annual efficiency of the multi-tower field without considering the interactions is only slightly higher than the two separated single tower fields. However, using the proposed method, the optical performance of the multi-tower field improves and the annual efficiency of 54.58% is reachable, which is 0.21% higher than the case without considering the interactions and 0.26% higher than the separated single tower fields.

Suggested Citation

  • Piroozmand, Pasha & Boroushaki, Mehrdad, 2016. "A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions," Energy, Elsevier, vol. 106(C), pages 240-252.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:240-252
    DOI: 10.1016/j.energy.2016.03.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    2. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    3. Siala, F.M.F & Elayeb, M.E, 2001. "Mathematical formulation of a graphical method for a no-blocking heliostat field layout," Renewable Energy, Elsevier, vol. 23(1), pages 77-92.
    4. Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
    5. Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
    6. Besarati, Saeb M. & Yogi Goswami, D., 2014. "A computationally efficient method for the design of the heliostat field for solar power tower plant," Renewable Energy, Elsevier, vol. 69(C), pages 226-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serrano-Arrabal, J. & Serrano-Aguilera, J.J. & Sánchez-González, A., 2021. "Dual-tower CSP plants: optical assessment and optimization with a novel cone-tracing model," Renewable Energy, Elsevier, vol. 178(C), pages 429-442.
    2. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications," Energy, Elsevier, vol. 114(C), pages 513-525.
    3. Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
    4. Rizvi, Arslan A. & Yang, Dong, 2022. "A detailed account of calculation of shading and blocking factor of a heliostat field," Renewable Energy, Elsevier, vol. 181(C), pages 292-303.
    5. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    6. Liu, Zengqiang & Lin, Xiaoxia & Zhao, Yuhong & Feng, Jieqing, 2023. "Determination of simulation parameters in Monte Carlo ray tracing for radiative flux density distribution simulation," Energy, Elsevier, vol. 276(C).
    7. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    8. Wang, Chen & Guo, Su & Pei, Huanjin & He, Yi & Liu, Deyou & Li, Mengying, 2023. "Rolling optimization based on holism for the operation strategy of solar tower power plant," Applied Energy, Elsevier, vol. 331(C).
    9. Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
    10. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    11. Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    12. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    13. Rodríguez-Sánchez, M.R. & Leray, C. & Toutant, A. & Ferriere, A. & Olalde, G., 2019. "Development of a new method to estimate the incident solar flux on central receivers from deteriorated heliostats," Renewable Energy, Elsevier, vol. 130(C), pages 182-190.
    14. Chao Li & Rongrong Zhai & Yongping Yang, 2017. "Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm," Energies, MDPI, vol. 10(11), pages 1-15, November.
    15. Yamani, Noureddine & Khellaf, Abdallah & Mohammedi, Kamal & Behar, Omar, 2017. "Assessment of solar thermal tower technology under Algerian climate," Energy, Elsevier, vol. 126(C), pages 444-460.
    16. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    17. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    2. Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
    3. Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
    4. Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    5. Omar Behar & Daniel Sbarbaro & Luis Morán, 2020. "A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    6. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    7. Zhang, Maolong & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "An efficient code to optimize the heliostat field and comparisons between the biomimetic spiral and staggered layout," Renewable Energy, Elsevier, vol. 87(P1), pages 720-730.
    8. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Wang, Shuang & Asselineau, Charles-Alexis & Fontalvo, Armando & Wang, Ye & Logie, William & Pye, John & Coventry, Joe, 2023. "Co-optimisation of the heliostat field and receiver for concentrated solar power plants," Applied Energy, Elsevier, vol. 348(C).
    10. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    11. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    12. Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
    13. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    14. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    15. Chao Li & Rongrong Zhai & Yongping Yang, 2017. "Optimization of a Heliostat Field Layout on Annual Basis Using a Hybrid Algorithm Combining Particle Swarm Optimization Algorithm and Genetic Algorithm," Energies, MDPI, vol. 10(11), pages 1-15, November.
    16. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    17. García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.
    18. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    19. Wang, Jianxing & Guo, Lili & Zhang, Chengying & Song, Lei & Duan, Jiangyong & Duan, Liqiang, 2020. "Thermal power forecasting of solar power tower system by combining mechanism modeling and deep learning method," Energy, Elsevier, vol. 208(C).
    20. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic evaluation of water-injected air bottoming cycles hybridization using heliostat field collector: Comparative analyses," Energy, Elsevier, vol. 119(C), pages 1230-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:240-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.