IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v46y2012icp49-59.html
   My bibliography  Save this article

Campo: Generation of regular heliostat fields

Author

Listed:
  • Collado, Francisco J.
  • Guallar, Jesús

Abstract

The main problem in the full design and optimization of heliostats fields for Solar Power Tower (SPT) systems is the recalculation of the shadings and blockings for each heliostat in the field at every stage of the optimization process while the layout is being modified. To make easier the solution to this complex problem, a new code, called campo, for the design and performance analysis of heliostat fields, is presented in this paper. The code campo, based on the Matlab type cell data structure, is able to generate regular but flexible radial staggered layouts of heliostat fields. A major feature of campo is the ability to perform fast and accurate calculations of the shadowing and blocking factor for each and every one of the heliostats in the field. Further, the data structure of the code allows an efficient selection of the relevant blocking and shading neighbours even while the layout is being changed. Both distinctive features are analysed here in depth. In this new code, the optimization would proceed from densest fields, with the worst shadowing and blocking factor, towards expanded fields. Several options to gradually expand the starting dense layouts are successfully checked. This code would allow a full optimization process in which the thousands of heliostat coordinates would be actually included in the optimum search.

Suggested Citation

  • Collado, Francisco J. & Guallar, Jesús, 2012. "Campo: Generation of regular heliostat fields," Renewable Energy, Elsevier, vol. 46(C), pages 49-59.
  • Handle: RePEc:eee:renene:v:46:y:2012:i:c:p:49-59
    DOI: 10.1016/j.renene.2012.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811200198X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collado, Francisco J., 2009. "Preliminary design of surrounding heliostat fields," Renewable Energy, Elsevier, vol. 34(5), pages 1359-1363.
    2. Wei, Xiudong & Lu, Zhenwu & Wang, Zhifeng & Yu, Weixing & Zhang, Hongxing & Yao, Zhihao, 2010. "A new method for the design of the heliostat field layout for solar tower power plant," Renewable Energy, Elsevier, vol. 35(9), pages 1970-1975.
    3. Yao, Zhihao & Wang, Zhifeng & Lu, Zhenwu & Wei, Xiudong, 2009. "Modeling and simulation of the pioneer 1MW solar thermal central receiver system in China," Renewable Energy, Elsevier, vol. 34(11), pages 2437-2446.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    2. Collado, Francisco J. & Guallar, Jesús, 2013. "A review of optimized design layouts for solar power tower plants with campo code," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 142-154.
    3. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    4. Saghafifar, Mohammad & Gadalla, Mohamed & Mohammadi, Kasra, 2019. "Thermo-economic analysis and optimization of heliostat fields using AINEH code: Analysis of implementation of non-equal heliostats (AINEH)," Renewable Energy, Elsevier, vol. 135(C), pages 920-935.
    5. Yamani, Noureddine & Khellaf, Abdallah & Mohammedi, Kamal & Behar, Omar, 2017. "Assessment of solar thermal tower technology under Algerian climate," Energy, Elsevier, vol. 126(C), pages 444-460.
    6. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    7. Wei, Xiudong & Lu, Zhenwu & Yu, Weixing & Zhang, Hongxin & Wang, Zhifeng, 2011. "Tracking and ray tracing equations for the target-aligned heliostat for solar tower power plants," Renewable Energy, Elsevier, vol. 36(10), pages 2687-2693.
    8. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    9. Ortega, Guillermo & Rovira, Antonio, 2020. "A new method for the selection of candidates for shading and blocking in central receiver systems," Renewable Energy, Elsevier, vol. 152(C), pages 961-973.
    10. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    11. Xie, Qiyue & Guo, Ziqi & Liu, Daifei & Chen, Zhisheng & Shen, Zhongli & Wang, Xiaoli, 2021. "Optimization of heliostat field distribution based on improved Gray Wolf optimization algorithm," Renewable Energy, Elsevier, vol. 176(C), pages 447-458.
    12. Yu, Qiang & Wang, Zhifeng & Xu, Ershu & Li, Xin & Guo, Minghuan, 2012. "Modeling and dynamic simulation of the collector and receiver system of 1MWe DAHAN solar thermal power tower plant," Renewable Energy, Elsevier, vol. 43(C), pages 18-29.
    13. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    14. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    15. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
    16. Chang, Zheshao & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Numerical simulation on the thermal performance of a solar molten salt cavity receiver," Renewable Energy, Elsevier, vol. 69(C), pages 324-335.
    17. Claudia Toro & Matteo V. Rocco & Emanuela Colombo, 2016. "Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid," Energies, MDPI, vol. 9(11), pages 1-17, October.
    18. Atif, Maimoon. & Al-Sulaiman, Fahad A., 2017. "Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 153-167.
    19. Hu, Yeguang & Shen, Hao & Yao, Yingxue, 2018. "A novel sun-tracking and target-aiming method to improve the concentration efficiency of solar central receiver systems," Renewable Energy, Elsevier, vol. 120(C), pages 98-113.
    20. Thalange, Vinayak C. & Dalvi, Vishwanath H. & Mahajani, Sanjay M. & Panse, Sudhir V. & Joshi, Jyeshtharaj B. & Patil, Raosaheb N., 2017. "Design, optimization and optical performance study of tripod heliostat for solar power tower plant," Energy, Elsevier, vol. 135(C), pages 610-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:46:y:2012:i:c:p:49-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.