IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp270-280.html
   My bibliography  Save this article

Floating offshore wind - Economic and ecological challenges of a TLP solution

Author

Listed:
  • Kausche, Michael
  • Adam, Frank
  • Dahlhaus, Frank
  • Großmann, Jochen

Abstract

Offshore wind farms will play an important role in supplying the increasing energy demand while considering ecological and economic aspects. Especially floating foundations which have a great potential for offshore wind farms in water depths between 40 m up to 200 m and more, will be a major factor. The objective of this paper is to focus on the design of a TLP substructure including the anchoring in the seabed by considering the economic and ecological aspects. One main focus is on economic challenges and the approaches for reduction of the investment costs and the Levelized Cost of Energy. A second focus is on the cumulative energy demand as well on the expected CO2-emissions during the fabrication process.

Suggested Citation

  • Kausche, Michael & Adam, Frank & Dahlhaus, Frank & Großmann, Jochen, 2018. "Floating offshore wind - Economic and ecological challenges of a TLP solution," Renewable Energy, Elsevier, vol. 126(C), pages 270-280.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:270-280
    DOI: 10.1016/j.renene.2018.03.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adam, Frank & Myland, Thomas & Schuldt, Burkhard & Großmann, Jochen & Dahlhaus, Frank, 2014. "Evaluation of internal force superposition on a TLP for wind turbines," Renewable Energy, Elsevier, vol. 71(C), pages 271-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryenbakken, Magnus N. & Nieuwenhout, Ceciel T., 2023. "Efficient floating offshore wind realization: A comparative legal analysis of France, Norway and the United Kingdom," Energy Policy, Elsevier, vol. 183(C).
    2. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    4. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. J Charles Rajesh Kumar & D Vinod Kumar & D Baskar & B Mary Arunsi & R Jenova & MA Majid, 2021. "Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health, and safety management in India," Energy & Environment, , vol. 32(4), pages 565-603, June.
    6. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    7. Dallavalle, Elisa & Cipolletta, Mariasole & Casson Moreno, Valeria & Cozzani, Valerio & Zanuttigh, Barbara, 2021. "Towards green transition of touristic islands through hybrid renewable energy systems. A case study in Tenerife, Canary Islands," Renewable Energy, Elsevier, vol. 174(C), pages 426-443.
    8. Joannes Olondriz & Wei Yu & Josu Jugo & Frank Lemmer & Iker Elorza & Santiago Alonso-Quesada & Aron Pujana-Arrese, 2018. "Using Multiple Fidelity Numerical Models for Floating Offshore Wind Turbine Advanced Control Design," Energies, MDPI, vol. 11(9), pages 1-13, September.
    9. López, Mario & Claus, Rubén & Soto, Fernando & Hernández-Garrastacho, Zenaida A. & Cebada-Relea, Alejandro & Simancas, Orlando, 2024. "Advancing offshore solar energy generation: The HelioSea concept," Applied Energy, Elsevier, vol. 359(C).
    10. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    11. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    13. Malleret, Simon & Jansen, Malte & Laido, Ahti Simo & Kitzing, Lena, 2024. "Profitability dynamics of offshore wind from auction to investment decision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    15. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2021. "Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    16. Thanh Dam Pham & Hyunkyoung Shin, 2019. "A New Conceptual Design and Dynamic Analysis of a Spar-Type Offshore Wind Turbine Combined with a Moonpool," Energies, MDPI, vol. 12(19), pages 1-15, September.
    17. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Govindan, Kannan, 2023. "Pathways to low carbon energy transition through multi criteria assessment of offshore wind energy barriers," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    20. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    21. Stephan Oelker & Aljoscha Sander & Markus Kreutz & Abderrahim Ait-Alla & Michael Freitag, 2021. "Evaluation of the Impact of Weather-Related Limitations on the Installation of Offshore Wind Turbine Towers," Energies, MDPI, vol. 14(13), pages 1-12, June.
    22. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    23. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    2. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    3. Niccolo Bruschi & Giulio Ferri & Enzo Marino & Claudio Borri, 2020. "Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine," Energies, MDPI, vol. 13(23), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:270-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.