IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp134-146.html
   My bibliography  Save this article

Economic and environmental benefits of geothermal energy in industrial processes

Author

Listed:
  • Palomo-Torrejón, Elisabet
  • Colmenar-Santos, Antonio
  • Rosales-Asensio, Enrique
  • Mur-Pérez, Francisco

Abstract

As the industrial sector is one of the world’s largest greenhouse gas dispatcher, a solution must be found, and geothermal energy can make a significant contribution to this challenge.

Suggested Citation

  • Palomo-Torrejón, Elisabet & Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Mur-Pérez, Francisco, 2021. "Economic and environmental benefits of geothermal energy in industrial processes," Renewable Energy, Elsevier, vol. 174(C), pages 134-146.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:134-146
    DOI: 10.1016/j.renene.2021.04.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, Ting & Liu, Zhen (Leo), 2019. "Thermohaline stratification modeling in mine water via double-diffusive convection for geothermal energy recovery from flooded mines," Applied Energy, Elsevier, vol. 237(C), pages 566-580.
    2. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    3. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Batidzirai, Bothwell & Lysen, Erik H. & van Egmond, Sander & van Sark, Wilfried G.J.H.M., 2009. "Potential for solar water heating in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 567-582, April.
    5. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    6. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    7. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    8. Benli, Hüseyin, 2016. "Potential application of solar water heaters for hot water production in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 99-109.
    9. Pollack, Ahinoam & Mukerji, Tapan, 2019. "Accounting for subsurface uncertainty in enhanced geothermal systems to make more robust techno-economic decisions," Applied Energy, Elsevier, vol. 254(C).
    10. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    11. Antonio Colmenar-Santos & Elisabet Palomo-Torrejón & Enrique Rosales-Asensio & David Borge-Diez, 2018. "Measures to Remove Geothermal Energy Barriers in the European Union," Energies, MDPI, vol. 11(11), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arciuolo, Thomas F. & Faezipour, Miad, 2022. "Yellowstone Caldera Volcanic Power Generation Facility: A new engineering approach for harvesting emission-free green volcanic energy on a national scale," Renewable Energy, Elsevier, vol. 198(C), pages 415-425.
    2. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    3. Zhou, Zongming & Cao, Yan & Anqi, Ali E. & Zoghi, Mohammad & Habibi, Hamed & Rajhi, Ali A. & Alamri, Sagr, 2022. "Converting a geothermal-driven steam flash cycle into a high-performance polygeneration system by waste heat recovery: 3E analysis and Genetic-Fgoalattain optimization," Renewable Energy, Elsevier, vol. 186(C), pages 609-627.
    4. David Cook & Ingibjörg Karlsdóttir & Inga Minelgaite, 2022. "Enjoying the Heat? Co-Creation of Stakeholder Benefits and Sustainable Energy Development within Projects in the Geothermal Sector," Energies, MDPI, vol. 15(3), pages 1-21, January.
    5. Xia, Zhenhua & Qin, Siyu & Tao, Zeyu & Jia, Guosheng & Cheng, Chonghua & Jin, Liwen, 2023. "Multi-factor optimization of thermo-economic performance of coaxial borehole heat exchanger geothermal system based on Levelized Cost of Energy analysis," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    2. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.
    3. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    4. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.
    5. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    6. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    7. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    8. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    9. Zolfaghari, Seyed Mohammad & Soltani, M. & Hosseinpour, Morteza & Nathwani, Jatin, 2023. "Comprehensive analysis of geothermal energy integration with heavy oil upgrading in hot compressed water," Applied Energy, Elsevier, vol. 345(C).
    10. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Cristina Sáez Blázquez & Ignacio Martín Nieto & Javier Carrasco & Pedro Carrasco & Daniel Porras & Miguel Ángel Maté-González & Arturo Farfán Martín & Diego González-Aguilera, 2024. "Applying Deep Electrical-Resistivity Tomography Techniques for the Exploration of Medium- and Low-Geothermal Energy Resources," Energies, MDPI, vol. 17(8), pages 1-16, April.
    12. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    13. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    14. Francisco Álvarez-Sánchez & Jassón Flores-Prieto & Octavio García-Valladares, 2021. "Annual Thermal Performance of an Industrial Hybrid Direct–Indirect Solar Air Heating System for Drying Applications in Morelos-México," Energies, MDPI, vol. 14(17), pages 1-20, August.
    15. Rosas-Flores, Jorge Alberto & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2016. "Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 243-252.
    16. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    17. Nyoni, Thabani, 2019. "Modeling and forecasting demand for electricity in Zimbabwe using the Box-Jenkins ARIMA technique," MPRA Paper 96903, University Library of Munich, Germany.
    18. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    19. Alina Zaharia & Maria Claudia Diaconeasa & Laura Brad & Georgiana-Raluca Lădaru & Corina Ioanăș, 2019. "Factors Influencing Energy Consumption in the Context of Sustainable Development," Sustainability, MDPI, vol. 11(15), pages 1-28, August.
    20. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:134-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.