IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124017981.html
   My bibliography  Save this article

Isopropanol-Acetone-Hydrogen chemical heat pumps for improved heat recovery from geothermal resources, A case study in China

Author

Listed:
  • Liu, Zhengguang
  • Wang, Lili
  • Yang, Xiaohu
  • Babaei, Masoud

Abstract

This study focuses on geothermal energy utilization through multi-objective optimization of Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP). In this paper, IAH-CHP coupled with medium-low temperature geothermal heat source simulation was constructed. China, the world’s largest carbon emitter, was used as a case study to highlight environmental benefits. Comparative analysis was conducted between carbon emissions and investment of chemical heat pumps with other common heating equipment in different buildings. The results show IAH-CHP system has higher initial investment costs, however, their CO2 emissions are significantly lower. The results of multi-objective analysis demonstrate the system can operate under a Pareto (multi-objective) optimal scheme. Under this plan, the levelized cost of heat (LCOH) is only 0.12 USD/kJ, and the carbon emissions are as low as 4.97 tons/year with a coefficient of performance (COP) of 7.4. Compared with a single-objective optimal solution, 8.12 tons of carbon emissions and LCOH of 0.15 USD/kJ could be achieved. Applying IAH-CHP system to China to replace original coal-fired heating solution can achieve annual carbon emission reduction of more than 5 million tons in areas with medium and low temperature heat sources.

Suggested Citation

  • Liu, Zhengguang & Wang, Lili & Yang, Xiaohu & Babaei, Masoud, 2024. "Isopropanol-Acetone-Hydrogen chemical heat pumps for improved heat recovery from geothermal resources, A case study in China," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017981
    DOI: 10.1016/j.renene.2024.121730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Xinyu & Li, Fangfei & Liu, Zhengguang & Gao, Xinyu & Yang, Xiaohu & Yan, Jinyue, 2023. "Design and optimization of a novel phase change photovoltaic thermal utilization structure for building envelope," Renewable Energy, Elsevier, vol. 218(C).
    2. Zhengguang Liu & Gaoyang Hou & Ying Song & Hessam Taherian & Shuaiwei Qi, 2022. "The Impact of Soil Hydrothermal Properties on Geothermal Power Generation (GPG): Modeling and Analysis," Energies, MDPI, vol. 15(2), pages 1-12, January.
    3. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    4. Yang, Minbo & Li, Ting & Feng, Xiao & Wang, Yufei, 2020. "A simulation-based targeting method for heat pump placements in heat exchanger networks," Energy, Elsevier, vol. 203(C).
    5. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    6. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    7. Kong, Hui & Wang, Jian & Zheng, Hongfei & Wang, Hongsheng & Zhang, Jun & Yu, Zhufeng & Bo, Zheng, 2022. "Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production," Energy, Elsevier, vol. 239(PC).
    8. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    9. Palomo-Torrejón, Elisabet & Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Mur-Pérez, Francisco, 2021. "Economic and environmental benefits of geothermal energy in industrial processes," Renewable Energy, Elsevier, vol. 174(C), pages 134-146.
    10. Yeo, Lip Siang & Teng, Sin Yong & Ng, Wendy Pei Qin & Lim, Chun Hsion & Leong, Wei Dong & Lam, Hon Loong & Wong, Yat Choy & Sunarso, Jaka & How, Bing Shen, 2022. "Sequential optimization of process and supply chains considering re-refineries for oil and gas circularity," Applied Energy, Elsevier, vol. 322(C).
    11. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2023. "Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle," Renewable Energy, Elsevier, vol. 217(C).
    12. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    13. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    14. Ji, Zhengsen & Niu, Dongxiao & Li, Wanying & Wu, Gengqi & Yang, Xiaolong & Sun, Lijie, 2022. "Improving the energy efficiency of China: An analysis considering clean energy and fossil energy resources," Energy, Elsevier, vol. 259(C).
    15. Farzanehkhameneh, Pooya & Soltani, M. & Moradi Kashkooli, Farshad & Ziabasharhagh, Masoud, 2020. "Optimization and energy-economic assessment of a geothermal heat pump system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Xu, Mingtian, 2012. "Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump," Applied Energy, Elsevier, vol. 93(C), pages 261-267.
    17. Hou, Gaoyang & Taherian, Hessam & Li, Longjun, 2020. "A predictive TRNSYS model for long-term operation of a hybrid ground source heat pump system with innovative horizontal buried pipe type," Renewable Energy, Elsevier, vol. 151(C), pages 1046-1054.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    2. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    3. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    5. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    6. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    7. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    8. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    9. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    10. Rodríguez, Rafael & Díaz, María B., 2009. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method," Renewable Energy, Elsevier, vol. 34(7), pages 1716-1725.
    11. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    12. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    13. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    14. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    15. Dong, Shihao & Yu, Yuelong & Li, Bingxue & Ni, Long, 2024. "Geologic and thermal conductivity analysis based on geophysical test and combined modeling," Energy, Elsevier, vol. 310(C).
    16. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    17. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    18. Hai, Tao & Asadollahzadeh, Muhammad & Chauhan, Bhupendra Singh & AlQemlas, Turki & Elbadawy, Ibrahim & Salah, Bashir & Feyzbaxsh, Mahrad, 2023. "3E investigation and artificial neural network optimization of a new triple-flash geothermally-powered configuration," Renewable Energy, Elsevier, vol. 215(C).
    19. Sowizdzal, Anna, 2018. "Geothermal energy resources in Poland – Overview of the current state of knowledge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4020-4027.
    20. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.