IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223010630.html
   My bibliography  Save this article

Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies

Author

Listed:
  • Cai, Benan
  • Long, Chengjun
  • Du, Qiaochen
  • Zhang, Wenchao
  • Hou, Yandong
  • Wang, Haijun
  • Cai, Weihua

Abstract

Making full use of low-grade waste heat is of great significance in desalination technology. A spray flash desalination system driven by low-grade waste heat is established in this paper. The complex intermittency is taken into account in the current modeling analysis. The transient feed tank temperature, long-term system capacity, total production and energy performance of the system are investigated for various intermittencies. The results reveal that the maximum feed tank temperature presents a non-monotonic variation and reaches a stable value of 342.8 K when the rate of heat storage reaches 0. The transient production rate profiles display a jump at the intersection between the period when the waste heat source is on and off. The total production increases by 150.1% as the intermittency decreases from 80% to 20% at t = 1200min. The feed water flow rate has a non-monotonic effect on the total production for 75% intermittency. The specific thermal energy consumption (STEC) rises from 278.63 to 1023.51 kJ/kg as the feed water flow rate increases from 2 to 10 L/min at t = 60min. STEC is more affected by the feed water flow rate compared with other parameters.

Suggested Citation

  • Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010630
    DOI: 10.1016/j.energy.2023.127669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhani, K. & Ben Bacha, H., 2010. "Experimental investigation of a new solar desalination prototype using the humidification dehumidification principle," Renewable Energy, Elsevier, vol. 35(11), pages 2610-2617.
    2. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    3. Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2021. "Modeling and energy analysis of a solar thermal vacuum membrane distillation coupled with a liquid ring vacuum pump," Renewable Energy, Elsevier, vol. 164(C), pages 1395-1407.
    4. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    5. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    6. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    7. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    8. Araghi, Alireza Hosseini & Khiadani, Mehdi & Hooman, Kamel, 2016. "A novel vacuum discharge thermal energy combined desalination and power generation system utilizing R290/R600a," Energy, Elsevier, vol. 98(C), pages 215-224.
    9. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    10. Karol Sztekler & Wojciech Kalawa & Wojciech Nowak & Lukasz Mika & Slawomir Gradziel & Jaroslaw Krzywanski & Ewelina Radomska, 2020. "Experimental Study of Three-Bed Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 13(21), pages 1-13, November.
    11. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    12. Maidment, G.G. & Eames, I.W. & Psaltas, M. & Lalzad, A. & Yiakoumetti, K., 2007. "Flash-type barometric desalination plant powered by waste heat from electricity power stations in Cyprus," Applied Energy, Elsevier, vol. 84(1), pages 66-77, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2018. "Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system," Energy, Elsevier, vol. 151(C), pages 387-401.
    2. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    3. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2019. "Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system," Energy, Elsevier, vol. 166(C), pages 871-885.
    4. Chen, Q. & Oh, S.J. & Li, Y. & Ja, M. Kum, 2020. "Thermodynamic optimization of a low-temperature desalination system driven by sensible heat sources," Energy, Elsevier, vol. 192(C).
    5. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    6. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    7. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    9. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    10. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    11. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    12. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    13. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    14. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    15. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    16. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    17. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    18. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    19. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    20. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.