IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp84-92.html
   My bibliography  Save this article

Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage

Author

Listed:
  • Li, Bingmeng
  • Shu, Dan
  • Wang, Ruifang
  • Zhai, Lanlan
  • Chai, Yuye
  • Lan, Yunjun
  • Cao, Hongwei
  • Zou, Chao

Abstract

Inspired by the common preparation method of mesoporous silica where polyethylene glycol (PEG) was used as template to obtain porous silica, PEG/silica (PEG@SiO2) composite as shape-stabilized phase change material for energy storage was well prepared. In this paper, PEG was used as phase change material (PCM) to store and release thermal energy and SiO2 acted as the supporting matrix. Various techniques were employed to characterize the structural and thermal properties of PEG@SiO2. The results indicate that PEG was encapsulated in SiO2 shell with physical interactions. The phase change enthalpy of PEG@SiO2 is 164.9 J/g in the melting process and 160.1 J/g in the solidifying process with the mass fraction of 97 wt%. It is a considerably exciting result as the value is so close to pristine PEG’s (178.6 J/g). PEG@SiO2 exhibited excellent thermal reliability based on the results of undergoing the heating-cooling cycle 100 times. Also, PEG@SiO2 had a good thermal stability within its working temperature range. This study provides a general approach for increasing the loading of PCMs in porous materials and thus the energy storage capability.

Suggested Citation

  • Li, Bingmeng & Shu, Dan & Wang, Ruifang & Zhai, Lanlan & Chai, Yuye & Lan, Yunjun & Cao, Hongwei & Zou, Chao, 2020. "Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 84-92.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:84-92
    DOI: 10.1016/j.renene.2019.05.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiayin & Hu, Xiaowu & Zhang, Chuge & Luo, Wenxing & Jiang, Xiongxin, 2021. "Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage," Renewable Energy, Elsevier, vol. 178(C), pages 118-127.
    2. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Quan, Bingqing & Wang, Jinzhi & Li, Yi & Sui, Miao & Xie, Heng & Liu, Zhigang & Wu, Hao & Lu, Xiang & Tong, Yi, 2023. "Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity," Energy, Elsevier, vol. 262(PB).
    4. Wang, Miao & Li, Pan & Yu, Faquan, 2021. "Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage," Renewable Energy, Elsevier, vol. 172(C), pages 599-605.
    5. Li, Chuanchang & Wang, Mengfan & Xie, Baoshan & Ma, Huan & Chen, Jian, 2020. "Enhanced properties of diatomite-based composite phase change materials for thermal energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 265-274.
    6. Sun, Shaofeng & Gao, Yan & Han, Na & Zhang, XingXiang & Li, Wei, 2021. "Reversible photochromic energy storage polyurea microcapsules via in-situ polymerization," Energy, Elsevier, vol. 219(C).
    7. Liu, Huan & Tian, Xinxin & Ouyang, Mize & Wang, Xiang & Wu, Dezhen & Wang, Xiaodong, 2021. "Microencapsulating n-docosane phase change material into CaCO3/Fe3O4 composites for high-efficient utilization of solar photothermal energy," Renewable Energy, Elsevier, vol. 179(C), pages 47-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:84-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.