IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v22y1997i1p43-48.html
   My bibliography  Save this article

Water film cooling over the glass cover of a solar still including evaporation effects

Author

Listed:
  • Abu-Hijleh, Bassam A/K
  • Mousa, Hasan A.

Abstract

The effect of water film cooling of the glass cover on the efficiency of a single-basin still has been investigated numerically. Proper use of the film-cooling parameters may increase the still efficiency by up to 20%. On the other hand, a poor combination of these parameters leads to a significant reduction in efficiency. The presence of the cooling film neutralizes the effect of wind speed on still efficiency. Only a small fraction of the cooling film evaporates as it passes over the glass cover.

Suggested Citation

  • Abu-Hijleh, Bassam A/K & Mousa, Hasan A., 1997. "Water film cooling over the glass cover of a solar still including evaporation effects," Energy, Elsevier, vol. 22(1), pages 43-48.
  • Handle: RePEc:eee:energy:v:22:y:1997:i:1:p:43-48
    DOI: 10.1016/S0360-5442(96)00088-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544296000886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(96)00088-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaushal, Aayush & Varun, 2010. "Solar stills: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 446-453, January.
    2. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    3. El-Samadony, Y.A.F. & Kabeel, A.E., 2014. "Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still," Energy, Elsevier, vol. 68(C), pages 744-750.
    4. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    5. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.
    6. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    8. Nasr, Abdelaziz & Debbissi Hfaiedh, Chokri & Ben Nasrallah, Sassi, 2011. "Numerical study of evaporation by mixed convection of a binary liquid film," Energy, Elsevier, vol. 36(5), pages 2316-2327.
    9. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    10. Arunkumar, T. & Velraj, R. & Denkenberger, D.C. & Sathyamurthy, Ravishankar & Kumar, K. Vinoth & Ahsan, Amimul, 2016. "Productivity enhancements of compound parabolic concentrator tubular solar stills," Renewable Energy, Elsevier, vol. 88(C), pages 391-400.
    11. Valsaraj, P., 2002. "An experimental study on solar distillation in a single slope basin still by surface heating the water mass," Renewable Energy, Elsevier, vol. 25(4), pages 607-612.
    12. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:22:y:1997:i:1:p:43-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.