IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp1115-1127.html
   My bibliography  Save this article

Intelligent energy management based on SCADA system in a real Microgrid for smart building applications

Author

Listed:
  • Kermani, Mostafa
  • Adelmanesh, Behin
  • Shirdare, Erfan
  • Sima, Catalina Alexandra
  • Carnì, Domenico Luca
  • Martirano, Luigi

Abstract

Energy management is one of the main challenges in Microgrids (MGs) applied to Smart Buildings (SBs). Hence, more studies are indispensable to consider both modeling and operating aspects to utilize the upcoming results of the system for the different applications. This paper presents a novel energy management architecture model based on complete Supervisory Control and Data Acquisition (SCADA) system duties in an educational building with an MG Laboratory (Lab) testbed, which is named LAMBDA at the Electrical and Energy Engineering Department of the Sapienza University of Rome. The LAMBDA MG Lab simulates in a small scale a SB and is connected with the DIAEE electrical network. LAMBDA MG is composed of a Photovoltaic generator (PV), a Battery Energy Storage System (BESS), a smart switchboard (SW), and different classified loads (critical, essential, and normal) some of which are manageable and controllable (lighting, air conditioning, smart plugs operating into the LAB). The aim of the LAMBDA implementation is making the DIAEE smart for energy saving purposes. In the LAMBDA Lab, the communication architecture consists in a complex of master/slave units and actuators carried out by two main international standards, Modbus (industrial serial standard for electrical and technical monitoring systems) and Konnex (an open standard for commercial and domestic building automation). Making the electrical department smart causes to reduce the required power from the main grid. Hence, to achieve the aims, results have been investigated in two modes. Initially, the real-time mode based on the SCADA system, which reveals real daily power consumption and production of different sources and loads. Next, the simulation part is assigned to shows the behavior of the main grid, loads and BESS charging and discharging based on energy management system. Finally, the proposed model has been examined in different scenarios and evaluated from the economic aspect.

Suggested Citation

  • Kermani, Mostafa & Adelmanesh, Behin & Shirdare, Erfan & Sima, Catalina Alexandra & Carnì, Domenico Luca & Martirano, Luigi, 2021. "Intelligent energy management based on SCADA system in a real Microgrid for smart building applications," Renewable Energy, Elsevier, vol. 171(C), pages 1115-1127.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1115-1127
    DOI: 10.1016/j.renene.2021.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Mostafa Kermani & Domenico Luca Carnì & Sara Rotondo & Aurelio Paolillo & Francesco Manzo & Luigi Martirano, 2020. "A Nearly Zero-Energy Microgrid Testbed Laboratory: Centralized Control Strategy Based on SCADA System," Energies, MDPI, vol. 13(8), pages 1-15, April.
    3. Leonori, Stefano & Martino, Alessio & Frattale Mascioli, Fabio Massimo & Rizzi, Antonello, 2020. "Microgrid Energy Management Systems Design by Computational Intelligence Techniques," Applied Energy, Elsevier, vol. 277(C).
    4. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    5. Kandemir, Ekrem & Cetin, Numan S. & Borekci, Selim, 2017. "A comprehensive overview of maximum power extraction methods for PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 93-112.
    6. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    7. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    8. Karami, Nabil & Moubayed, Nazih & Outbib, Rachid, 2017. "General review and classification of different MPPT Techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 1-18.
    9. Khodr, H.M. & El Halabi, N. & García-Gracia, M., 2012. "Intelligent renewable microgrid scheduling controlled by a virtual power producer: A laboratory experience," Renewable Energy, Elsevier, vol. 48(C), pages 269-275.
    10. Merei, Ghada & Moshövel, Janina & Magnor, Dirk & Sauer, Dirk Uwe, 2016. "Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications," Applied Energy, Elsevier, vol. 168(C), pages 171-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oprea, Simona-Vasilica & Bâra, Adela & Diaconita, Vlad, 2022. "A motivational local trading framework with 2-round auctioning and settlement rules embedded in smart contracts for a small citizen energy community," Renewable Energy, Elsevier, vol. 193(C), pages 225-239.
    2. Michał Krzykowski, 2021. "Legal Aspects of Cybersecurity in the Energy Sector—Current State and Latest Proposals of Legislative Changes by the EU," Energies, MDPI, vol. 14(23), pages 1-14, November.
    3. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    4. Geovane L. Reis & Danilo I. Brandao & João H. Oliveira & Lucas S. Araujo & Braz J. Cardoso Filho, 2022. "Case Study of Single-Controllable Microgrid: A Practical Implementation," Energies, MDPI, vol. 15(17), pages 1-22, September.
    5. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    6. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    7. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    8. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    9. Negri, Simone & Tironi, Enrico & Superti-Furga, Gabrio & Carminati, Marco, 2021. "VSC-based LVDC distribution network with DERs: Equivalent circuits for leakage and ground fault currents evaluation," Renewable Energy, Elsevier, vol. 177(C), pages 1133-1146.
    10. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    11. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    12. Armando J. Taveras Cruz & Miguel Aybar-Mejía & Yobany Díaz Roque & Karla Coste Ramírez & José Gabriel Durán & Dinelson Rosario Weeks & Deyslen Mariano-Hernández & Luis Hernández-Callejo, 2023. "Implications of 5G Technology in the Management of Power Microgrids: A Review of the Literature," Energies, MDPI, vol. 16(4), pages 1-18, February.
    13. Mostafa Kermani & Erfan Shirdare & Saram Abbasi & Giuseppe Parise & Luigi Martirano, 2021. "Elevator Regenerative Energy Applications with Ultracapacitor and Battery Energy Storage Systems in Complex Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    14. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    15. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    2. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    4. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    6. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    7. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    8. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management – part II: System operation, power quality and protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 440-451.
    9. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    10. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    11. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    13. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    14. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    15. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part II: Review and classification of control strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1123-1134.
    16. Alberto Dolara & Francesco Grimaccia & Giulia Magistrati & Gabriele Marchegiani, 2017. "Optimization Models for Islanded Micro-Grids: A Comparative Analysis between Linear Programming and Mixed Integer Programming," Energies, MDPI, vol. 10(2), pages 1-20, February.
    17. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
    19. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    20. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:1115-1127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.