Real-time rotor effective wind speed estimation using Gaussian process regression and Kalman filtering
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.01.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Manobel, Bartolomé & Sehnke, Frank & Lazzús, Juan A. & Salfate, Ignacio & Felder, Martin & Montecinos, Sonia, 2018. "Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 125(C), pages 1015-1020.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
- Jastrzebska, Agnieszka & Morales Hernández, Alejandro & Nápoles, Gonzalo & Salgueiro, Yamisleydi & Vanhoof, Koen, 2022. "Measuring wind turbine health using fuzzy-concept-based drifting models," Renewable Energy, Elsevier, vol. 190(C), pages 730-740.
- Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Dong, Liang & Lio, Wai Hou & Pirrung, Georg Raimund, 2021. "Analysis and design of an adaptive turbulence-based controller for wind turbines," Renewable Energy, Elsevier, vol. 178(C), pages 730-744.
- Ullah, Ameen & Ullah, Safeer & Rahman, Tanzeel Ur & Sami, Irfan & Rahman, Ata Ur & Alghamdi, Baheej & Pan, Jianfei, 2025. "Enhanced wind energy conversion system performance using fast smooth second-order sliding mode control with neuro-fuzzy estimation and variable-gain robust exact output differentiator," Applied Energy, Elsevier, vol. 377(PA).
- Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
- Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Long, Huan & Xu, Shaohui & Gu, Wei, 2022. "An abnormal wind turbine data cleaning algorithm based on color space conversion and image feature detection," Applied Energy, Elsevier, vol. 311(C).
- Kebir, Anouer & Woodward, Lyne & Akhrif, Ouassima, 2019. "Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control," Renewable Energy, Elsevier, vol. 134(C), pages 914-926.
- Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
- Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
- Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
- Li, Xuan & Zhang, Wei, 2020. "Long-term fatigue damage assessment for a floating offshore wind turbine under realistic environmental conditions," Renewable Energy, Elsevier, vol. 159(C), pages 570-584.
- Mushtaq, Khurram & Waris, Asim & Zou, Runmin & Shafique, Uzma & Khan, Niaz B. & Khan, M. Ijaz & Jameel, Mohammed & Khan, Muhammad Imran, 2024. "A comprehensive approach to wind turbine power curve modeling: Addressing outliers and enhancing accuracy," Energy, Elsevier, vol. 304(C).
- Sebastiani, Alessandro & Angelou, Nikolas & Peña, Alfredo, 2024. "Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar," Applied Energy, Elsevier, vol. 364(C).
- Moss, Coleman & Maulik, Romit & Iungo, Giacomo Valerio, 2024. "Augmenting insights from wind turbine data through data-driven approaches," Applied Energy, Elsevier, vol. 376(PA).
- Nielson, Jordan & Bhaganagar, Kiran & Meka, Rajitha & Alaeddini, Adel, 2020. "Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction," Energy, Elsevier, vol. 190(C).
- Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
- Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
- Ding, Jun-Wei & Chuang, Ming-Ju & Tseng, Jing-Siou & Hsieh, I-Yun Lisa, 2024. "Reanalysis and Ground Station data: Advanced data preprocessing in deep learning for wind power prediction," Applied Energy, Elsevier, vol. 375(C).
- Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
- Wang, Yibo & Shao, Xinyao & Liu, Chuang & Cai, Guowei & Kou, Lei & Wu, Zhiqiang, 2019. "Analysis of wind farm output characteristics based on descriptive statistical analysis and envelope domain," Energy, Elsevier, vol. 170(C), pages 580-591.
- Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
- Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
- Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
- Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
- Karamichailidou, Despina & Kaloutsa, Vasiliki & Alexandridis, Alex, 2021. "Wind turbine power curve modeling using radial basis function neural networks and tabu search," Renewable Energy, Elsevier, vol. 163(C), pages 2137-2152.
More about this item
Keywords
Rotor effective wind speed; Kalman filtering; Gaussian process regression; State estimation; Down-regulation; Control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:670-686. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.