IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224017547.html
   My bibliography  Save this article

A comprehensive approach to wind turbine power curve modeling: Addressing outliers and enhancing accuracy

Author

Listed:
  • Mushtaq, Khurram
  • Waris, Asim
  • Zou, Runmin
  • Shafique, Uzma
  • Khan, Niaz B.
  • Khan, M. Ijaz
  • Jameel, Mohammed
  • Khan, Muhammad Imran

Abstract

This research presents a comprehensive approach to improving the accuracy of wind turbine power curve (WTPC) modeling. The WTPC is a critical tool for monitoring wind turbine performance and estimating wind power potential, but current models have limited ability to capture the complex relationship between wind speed and power output. To address these limitations, this study implements a dual-pronged refinement of WTPC modeling. First, an innovative data preprocessing technique is introduced, using a 97 % confidence interval around a KNN-estimated WTPC constructed using the Laplace distribution to meticulously eliminate prominent outliers. Second, a novel WTPC modeling approach based on quantile regression is adopted, accounting for the asymmetric error characteristics in the loss function. Four distinct quantile regression models are developed, including three tree-based algorithms - decision trees, random forests, and gradient boosting - and a deep learning-based quantile regression neural network. Comparative analysis against ten established parametric and nonparametric techniques confirms the superiority of the proposed models, with the decision tree quantile regression model achieving the lowest validation errors. The proposed techniques are validated on two real-world datasets from operational wind turbines in Turkey and China, demonstrating significant improvements in WTPC modeling accuracy compared to conventional methods. Overall, this study successfully presents a comprehensive modeling approach that addresses outliers and leverages quantile regression to significantly enhance WTPC accuracy.

Suggested Citation

  • Mushtaq, Khurram & Waris, Asim & Zou, Runmin & Shafique, Uzma & Khan, Niaz B. & Khan, M. Ijaz & Jameel, Mohammed & Khan, Muhammad Imran, 2024. "A comprehensive approach to wind turbine power curve modeling: Addressing outliers and enhancing accuracy," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017547
    DOI: 10.1016/j.energy.2024.131981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.